首页> 外文期刊>Constructive Approximation >New Coins from Old, Smoothly
【24h】

New Coins from Old, Smoothly

机译:从旧的,平稳的新硬币

获取原文
获取原文并翻译 | 示例

摘要

Given a (known) function f:[0,1]→(0,1), we consider the problem of simulating a coin with probability of heads f(p) by tossing a coin with unknown heads probability p, as well as a fair coin, N times each, where N may be random. The work of Keane and O’Brien (ACM Trans. Model. Comput. Simul. 4(2):213–219, 1994) implies that such a simulation scheme with the probability ℙ p (Nn) decaying exponentially in n for every p∈S. We prove that for α>0 noninteger, f is in the space C α [0,1] if and only if a simulation scheme as above exists with ℙ p (N>n)≤C(Δ n (p)) α , where varDelta n(x):=max{Ö{x(1-x)},1}varDelta _{n}(x):=max{sqrt{x(1-x)},1}. The key to the proof is a new result in approximation theory: Let B+nmathcal{B}^{+}_{n} be the cone of univariate polynomials with nonnegative Bernstein coefficients of degree n. We show that a function f:[0,1]→(0,1) is in C α [0,1] if and only if f has a series representation ån=1¥Fnsum_{n=1}^{infty}F_{n} with Fn Î B+nF_{n}in mathcal{B}^{+}_{n} and ∑ k>n F k (x)≤C(Δ n (x)) α for all x∈[0,1] and n≥1. We also provide a counterexample to a theorem stated without proof by Lorentz (Math. Ann. 151:239–251, 1963), who claimed that if some jn Î B+nvarphi_{n}inmathcal{B}^{+}_{n} satisfy |f(x)−φ n (x)|≤C(Δ n (x)) α for all x∈[0,1] and n≥1, then f∈C α [0,1].
机译:给定一个(已知)函数f:[0,1]→(0,1),我们考虑通过抛掷一个正面概率为p的硬币来模拟正面概率为f(p)的硬币的问题。公平硬币,每个N次,其中N可以是随机的。 Keane和O'Brien的工作(ACM Trans。Model。Comput。Simul。4(2):213-219,1994年)表明,这种模拟方案的概率为ℙ p (Nn)每个p∈S在n中呈指数衰减。我们证明,对于α> 0非整数,当且仅当存在带有ℙ p (N的上述模拟方案时,f才在空间C α [0,1]中> n)≤C(Δ n (p))α,其中varDelta n (x):= max {Ö{x(1 -x)/ n},1 / n} varDelta _ {n}(x):= max {sqrt {x(1-x)/ n},1 / n}。证明的关键是逼近理论中的新结果:令B + n mathcal {B} ^ {+} _ {n}为一元多项式的锥n阶非负伯恩斯坦系数。我们证明,当且仅当f具有序列表示å n = 1时,函数f:[0,1]→(0,1)在C α [0,1]中 ¥ F n sum_ {n = 1} ^ {infty} F_ {n}与F n ÎB + n F_ {n}的数学表达式{B} ^ {+} _ {n}和∑ k> n F k (x)≤C(Δ n (x))α。我们还提供了一个反例,证明了洛伦兹(Math。Ann。151:239–251,1963年)没有证据证明的一个定理,该定理声称如果某个j n βB + n varphi_ {n} inmathcal {B} ^ {+} _ {n}满足| f(x)−φ n (x)|≤C(Δ< sub> n (x))α对于所有x∈[0,1]和n≥1,则f∈Cα [0,1] 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号