首页> 外文期刊>Connection Science >A novel artificial immune clonal selection classification and rule mining with swarm learning model
【24h】

A novel artificial immune clonal selection classification and rule mining with swarm learning model

机译:群学习模型的新型人工免疫克隆选择分类与规则挖掘

获取原文

摘要

Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS~2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other A1S algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS~2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS~2 with other five methods, namely: Naieve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.
机译:元启发式优化算法已成为解决复杂问题的流行选择。通过将人工免疫克隆选择算法(CSA)和粒子群优化(PSO)算法相结合,提出了一种新的混合克隆选择分类和规则挖掘与群体学习算法(CS〜2)。该方法的主要目标是通过在克隆选择种群和粒子群之间共享信息来探索和探索克隆选择的并行计算优点以及粒子群的速度和自组织优点。因此,我们利用PSO的优势来改善人工免疫CSA的突变机制并挖掘数据集中的分类规则。因此,与其他A1S算法相比,我们提出的算法需要更少的训练时间和存储单元。在本文中,分类规则挖掘已被建模为具有预测精度的多目标优化问题。多目标方法旨在允许PSO算法返回准确性和可理解性边界的近似值,其中包含遍布边界的解决方案。我们使用八个基准数据集将我们提出的算法分类精度CS〜2与五个常用的CSA(即AIRS1,AIRS2,AIRS-Parallel,CLONALG和CSCA)进行了比较。我们还将提议的算法分类精度CS〜2与其他五种方法(即Naieve Bayes,SVM,MLP,CART和RFB)进行了比较。结果表明,所提算法与所研究的10种算法具有可比性。结果,由CSA和PSO构成的杂交可以发挥各自的优点,补偿对手的缺陷,并使搜索最佳效果和速度更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号