首页> 外文期刊>International journal of comadem >Model-Based Security System for Data Acquisition in e-Maintenance using Artificial Immune System and Cloud Computing
【24h】

Model-Based Security System for Data Acquisition in e-Maintenance using Artificial Immune System and Cloud Computing

机译:基于模型的人工免疫系统和云计算在电子维修中数据采集的安全系统

获取原文
获取原文并翻译 | 示例

摘要

e-Maintenance solutions are extensively used by the industry today. eMainlenanee is an emerging technology aimed to support the industry to achieve effectiveness and efficiency in their maintenance process through enhanced use of Information and Communication Technology (ICT). One of the essenlial components is an eMaintenance solution is data acquisition. Supervisory Control and Data Acquisition (SCADA) lias been used to manage data acquisition is many industrial systems. Now-a-days, modern SCADA systems are available through internet and other networks via IP protocol. An increased use of internet-based solutions requires appropriate management approaches to improve the safety and security aspects of a system. Hence, this paper suggests anew security model based security for SCaDA systems through Cloud computing and Artificial Immune System (AIS). Furthermore, the paper provides AIS, which is based on Decision Tree (C4.5 algorithm) using clustered features set. The features set are selected from NSL-KDD cup. It is a new version of KDD dataset. As a result, two Antibodies arc generated (that could recognize Normal and Antigen). After applying the resulted antibodies on the testing data set, the outputs are Normal, Antigen, and Unknown. Finally it is treated with Unknown us Antigen. As a result, the accuracy of the suggested model reaches a high level of 96.3%.
机译:电子维护解决方案已被当今行业广泛使用。 eMainlenanee是一项新兴技术,旨在通过增强对信息和通信技术(ICT)的使用来支持行业在维护过程中实现有效性和效率。电子维护的基本要素之一就是数据采集。监督控制和数据采集(SCADA)lias被用于管理许多工业系统中的数据采集。如今,现代的SCADA系统可通过IP协议通过Internet和其他网络使用。越来越多地使用基于Internet的解决方案,需要采用适当的管理方法来改善系统的安全性。因此,本文提出了一种通过云计算和人工免疫系统(AIS)为SCaDA系统提供基于安全模型的新安全性。此外,本文提供了基于决策树(C4.5算法)并使用聚类特征集的AIS。从NSL-KDD杯中选择功能集。它是KDD数据集的新版本。结果,生成了两个抗体(可以识别正常抗体和抗原)。将所得抗体应用于测试数据集后,输出为“正常”,“抗原”和“未知”。最后,用未知美国抗原治疗。结果,建议模型的准确性达到了96.3%的高水平。

著录项

  • 来源
    《International journal of comadem》 |2012年第4期|26-37|共12页
  • 作者单位

    Division of Operation & Maintenance engineering, Lulea University of Technology, Sweden;

    Division of Operation & Maintenance engineering, Lulea University of Technology, Sweden;

    Division of Operation & Maintenance engineering, Lulea University of Technology, Sweden;

    Division of Operation & Maintenance engineering, Lulea University of Technology, Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号