首页> 外文期刊>Concurrency and computation: practice and experience >Bayesian stochastic configuration networks for robust data modeling
【24h】

Bayesian stochastic configuration networks for robust data modeling

机译:贝叶斯随机配置网络,适用于鲁棒数据建模

获取原文
获取原文并翻译 | 示例

摘要

The SCN networks is incrementally generated by stochastic configuration (SC) algorithms. It randomly assigns the input weights and deviations of hidden nodes through a supervisory mechanism, which can be trained by solving linear modeling problems. The version that uses least squares to estimate the output weight performs well. This article introduces an alternative strategy for performing complete Bayesian inference (BI) of SCN networks. Different from the traditional way, the Bayesian training algorithm we proposed can obtain an entire probability distribution on the optimal output weight of the SCN networks, instead of a single pointwise estimate. The advantage of the Bayesian inference method lies in the possibility of introducing other prior knowledge during the training process, providing a way to measure uncertainty during the testing phase and the ability to automatically infer hyper-parameters from given data. The BI algorithm proposed in this article for regression problem can be implemented through an iterative process under some practical assumptions. Experimental results show that our proposed Bayesian SCN algorithm performs well in solving data modeling problems with a large number of outliers.
机译:SCN网络由随机配置(SC)算法逐渐生成。它通过监控机制随机分配隐藏节点的输入权重和偏差,这可以通过解决线性建模问题来训练。使用最小二乘估计输出权重的版本执行良好。本文介绍了执行SCN网络的完整贝叶斯推理(BI)的替代策略。与传统方式不同,我们提出的贝叶斯训练算法可以在SCN网络的最佳输出权重上获得整个概率分布,而不是单点估计。贝叶斯推断方法的优点在于在培训过程中引入其他先验知识的可能性,提供了一种方法来测量测试阶段期间的不确定性以及从给定数据自动推断超参数的能力。在本文中提出的回归问题中提出的BI算法可以通过在一些实际假设下通过迭代过程来实现。实验结果表明,我们提出的贝叶斯SCN算法在解决大量异常值的数据建模问题方面表现良好。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2022年第1期|e6495.1-e6495.10|共10页
  • 作者单位

    Zhejiang Gongshang Univ Sch Math & Stat Hangzhou 310018 Zhejiang Peoples R China;

    Zhejiang Gongshang Univ Sch Math & Stat Hangzhou 310018 Zhejiang Peoples R China;

    Zhejiang Gongshang Univ Sch Math & Stat Hangzhou 310018 Zhejiang Peoples R China;

    Zhejiang Gongshang Univ Sch Math & Stat Hangzhou 310018 Zhejiang Peoples R China|Zhejiang Gongshang Univ Collaborat Innovat Ctr Stat Data Engn Technol & A Hangzhou Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bayesian; robust; stochastic configuration networks;

    机译:贝叶斯;强大的;随机配置网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号