首页> 外文期刊>Concurrency and computation: practice and experience >Design and analysis of efficient neural intrusion detection for wireless sensor networks
【24h】

Design and analysis of efficient neural intrusion detection for wireless sensor networks

机译:无线传感器网络有效神经入侵检测的设计与分析

获取原文
获取原文并翻译 | 示例

摘要

Wireless sensor networks (WSNs) are important building blocks of the communication infrastructure in smart cities, intelligent transportation systems, Industry, Energy, and Agriculture 4.0, the Internet of Things, and other areas quickly adopting the concepts of fog and edge computing. Their cybernetic security is a major issue and efficient methods to improve their safety and reliability are required. Intrusion detection systems (IDSs) are complex systems that discover cybernetic attacks, detect malicious network traffic, and, in general, protect computer systems. Artificial neural networks are used by a variety of advanced intrusion detection systems with outstanding results. Their successful use in the specific conditions of WSNs requires efficient learning, adaptation, and inference. In this work, the acceleration of a neural intrusion detection model, developed specifically for wireless sensor networks, is proposed and studied, especially from the learning and classification accuracy and energy consumption points of view.
机译:无线传感器网络(WSNS)是智能城市,智能交通系统,产业,能源和农业4.0,事物互联网等领域的重要构建块,迅速采用雾和边缘计算的概念。他们的控制论证是提高安全性和可靠性的主要问题和有效的方法。入侵检测系统(IDS)是发现网络感染攻击,检测恶意网络流量的复杂系统,以及通常保护计算机系统。各种先进的入侵检测系统使用人工神经网络,具有出色的结果。他们在WSN的特定条件下成功使用需要高效的学习,适应和推理。在这项工作中,提出并研究了专门为无线传感器网络开发的神经入侵检测模型的加速,尤其是从学习和分类精度和能耗的观点来看。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号