首页> 外文期刊>Concurrency and computation: practice and experience >An open computing language-based parallel Brute Force algorithm for formal concept analysis on heterogeneous architectures
【24h】

An open computing language-based parallel Brute Force algorithm for formal concept analysis on heterogeneous architectures

机译:一种基于开放式计算语言的并联概念分析的基于开放计算语言的并联校准分析

获取原文
获取原文并翻译 | 示例

摘要

Algorithms for the extraction of formal concepts are widely studied in several areas of knowledge, such as finance, health, and statistics. However, these algorithms require high-performance processing due to their combinatorial characteristics. In this work, an Open computing language (OpenCL)-based Brute Force algorithm is proposed and evaluated for formal concept extraction on heterogeneous architectures (CPU+GPU and CPU+FPGA). The CPU+GPU architecture presents higher performance and scalability than other architectures when our Brute Force algorithm processes high dimensional contexts with many objects and attributes. Our parallel approach shows performance results up to 18x better than a smarter sequential algorithm called Data-Peeler. Moreover, our Brute Force algorithm running on CPU+GPU architecture has greater energy efficiency, reaching at least 1.79x more operations per energy consumption than other algorithms on different architectures explored in this work.
机译:用于提取正式概念的算法在几个知识领域中广泛研究,例如金融,健康和统计数据。 然而,这些算法由于其组合特性而需要高性能处理。 在这项工作中,提出了一种开放计算语言(OpenCL)基本的蛮力算法,并对异构架构(CPU + GPU和CPU + FPGA)进行正式概念提取。 CPU + GPU架构的性能和可伸缩性高于其他架构,当我们的蛮力算法处理具有许多对象和属性的高维上下文时。 我们的并行方法显示出比称为Data-Peeler的更智能顺序算法的性能结果高达18倍。 此外,我们在CPU + GPU架构上运行的蛮力算法具有更高的能量效率,比在这项工作中探索的不同架构上的其他算法达到了比其他算法更多的每次能耗更多1.79倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号