首页> 外文期刊>Concurrency and computation: practice and experience >Detection of periodontal bone loss in mandibular area from dental panoramic radiograph using image processing techniques
【24h】

Detection of periodontal bone loss in mandibular area from dental panoramic radiograph using image processing techniques

机译:使用图像处理技术检测牙科全治局射线照相下颌骨骨损伤

获取原文
获取原文并翻译 | 示例

摘要

Medical imaging plays the vital role in diagnosis of abnormalities. Periodontitis is a common chronic inflammatory disease damaging the soft tissue that untreated can lead to loss of bone, which supports the teeth. The severity of periodontitis is correlated to pocket depth in alveolar area. Even if analyses of the pocket depth can be manually performed, an automatic assistive tool can drastically help radiologists conduct more accurate analyses. In the proposed research, image processing algorithms were developed to compute pocket depth and diagnose the periodontitis. Radiologists manually segmented 350 panoramic radiographic images, dividing them into normal and periodontitis. The same dataset is used in our work to validate the Classification algorithm. The images are preprocessed with median filter and histogram equalization to improve the contrast and then segmented using two-dimensional-Otsu thresholding method into teeth and bony area in the mandibular region. Normal pocket depth of 3 mm as reported by American Academy of Periodontology is equivalently converted to pixel height in the radiographic images. Based on this pocket depth rule based classification method classifies the images into normal and periodontitis. The proposed work achieved 91.34% accuracy, 92.8% sensitivity, and 95.47% F-score in classifying the dental panoramic radiography.
机译:医学成像在诊断异常诊断中起着至关重要的作用。牙周炎是一种常见的慢性炎症性疾病,这些疾病损害了未处理的软组织可以导致骨骼的损失,这是支持牙齿的骨骼。牙周炎的严重程度与牙槽区域的口袋深度相关。即使可以手动地进行口袋深度的分析,自动辅助工具也可以大大帮助放射科医生进行更准确的分析。在拟议的研究中,开发了图像处理算法以计算口袋深度并诊断牙周炎。放射科医生手动分割了350个全景放射线图像,将它们划分为正常和牙周炎。在我们的工作中使用相同的数据集来验证分类算法。图像是预处理的中值滤波器和直方图均衡,以改善对比度,然后在下颌区域中使用二维-OTSU阈值阈值方法分割成齿和骨区域。正常的口袋深度为3毫米的美国牙周病学报告等效地转换为放射线图像中的像素高度。基于此掌握深度规则的分类方法将图像分类为正常和牙周炎。拟议的工作精度为91.34%,灵敏度为92.8%和95.47%在分类牙科全景射线照相中的95.47%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号