首页> 外文期刊>Concurrency and computation: practice and experience >SSAE-MLP: Stacked sparse autoencoders-basedmulti-layer perceptron for main bearing temperature prediction of large-scale wind turbines
【24h】

SSAE-MLP: Stacked sparse autoencoders-basedmulti-layer perceptron for main bearing temperature prediction of large-scale wind turbines

机译:SSAE-MLP:基于堆积的稀疏自动置换器 - 基于大型风力涡轮机的主轴承温度预测的基于稀疏自动化器。大型风力涡轮机的主轴承温度预测

获取原文
获取原文并翻译 | 示例

摘要

Condition monitoring and fault diagnosis of main bearings of large-scale wind turbines is critical for improving its reliability and reducing operating and maintenance costs, especially in the early stages. To achieve the goal, this paper proposes a novel deep learning approach named stacked sparse autoencoder multi-layer perceptron (SSAE-MLP) with a new framework by utilizing supervisory control and data acquisition (SCADA) data for wind turbine main bearing temperature prediction. After the SCADA parameter variables related to the temperature change of the main bearing are extracted, the input characteristic vector is constructed. Then, the multiple sparse autoencoders are stacked to learn the deep features inside the input data by applying the greedy layerwise unsupervised learning algorithm. Finally, a regression predictor is added to the top layer of the stacked sparse autoencoder model for supervised learning to fine-tune the overall network. Comparative experiments show that the proposed approach has superior performance for wind turbine main bearing temperature prediction.
机译:大规模风力涡轮机主轴承的情况监测和故障诊断对于提高其可靠性并降低操作和维护成本至关重要,特别是在早期阶段。为实现目标,本文提出了一种新的深度学习方法,通过利用监控和数据采集(SCADA)数据进行新框架,以新的框架命名为堆叠稀疏的自动化器多层Perceptron(SSAE-MLP),用于风力涡轮机主轴承温度预测。在提取与主轴承的温度变化相关的SCADA参数变量之后,构建了输入特征向量。然后,堆叠多个稀疏的AutoEncoders以通过应用贪婪的层无监督学习算法来了解输入数据内的深度特征。最后,将回归预测器添加到堆叠稀疏的AutoEncoder模型的顶层,以便监督学习以微调整体网络。比较实验表明,该方法具有卓越的风力涡轮机主要轴承温度预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号