首页> 外文期刊>Concurrency and computation: practice and experience >Nature-inspired resourcemanagement and dynamic rescheduling of microservices in Cloud datacenters
【24h】

Nature-inspired resourcemanagement and dynamic rescheduling of microservices in Cloud datacenters

机译:云数据中心微服务的自然启发勘探和动态重新安排

获取原文
获取原文并翻译 | 示例

摘要

Distributed Cloud environments are now resorting to Cloud applications composed of heterogeneous microservices. Cloud service providers strive to provide high quality of service (QoS) and response time is one of the key QoS attributes for microservices. The dynamism of microservice ecosystems necessitates runtime adaptations and microservices rescheduling to avoid performance degradation. Existing works target rescheduling in hypervisor-based systems, while ignoring the influence of configuration parameters of container-based microservices. In an effort to address these challenges, this article describes a novel microservice rescheduling framework, throttling and interaction-aware anticorrelated rescheduling for microservices, to proactively perform rescheduling activities whilst ensuring timely service responses. Based on periodic monitoring of the performance attributes, the framework schedules container migrations. Considering the exponentially large solution space, a metaheuristic approach based on multiverse optimization is developed to generate the near-optimal mapping of microservices to the datacenter resources. Experimental results indicate that our framework provides superior performance with a reduction of up to 13.97% in the average response time, when compared with systems with no support for rescheduling.
机译:分布式云环境现在求助于由异构微服务组成的云应用程序。云服务提供商努力提供高质量的服务(QoS)和响应时间是微服务的关键QoS属性之一。微服务生态系统的活力需要运行时适应和微服务重新安排,以避免性能下降。现有的作品目标重新安排在基于管理程序的系统中,同时忽略了基于容器的微服务配置参数的影响。本文努力解决这些挑战,本文介绍了一种新的微服务重新安排框架,节流和相互作用感知的对微服务的反铰接重新安排,以便在确保及时服务响应时主动执行重新安排活动。基于定期监视性能属性,框架计划容器迁移。考虑到指数大的解决方案空间,开发了一种基于多层次优化的成帧培育方法,以生成微服务对数据中心资源的近最优映射。实验结果表明,与不支持重新安排的系统相比,我们的框架在平均响应时间内减少了卓越的性能,在平均响应时间内降低了高达13.97%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号