首页> 外文期刊>Concurrency and computation: practice and experience >Hybrid feature selectionmodel based on relief-based algorithms and regulizer algorithms for cancer classification
【24h】

Hybrid feature selectionmodel based on relief-based algorithms and regulizer algorithms for cancer classification

机译:基于救济的癌症分类的基于浮雕的算法和调节器算法的混合特征选择模型

获取原文
获取原文并翻译 | 示例

摘要

Cancer is a group of diseases that involve abnormal cell growth with the potential to spread to other parts of the body. Cancer microarray data usually include a small number of samples with a large number of gene expression levels as features. Gene expression or microarray is a technology that monitors the expression of the large number of genes in parallel that make it useful in cancer classification, high dimensionality in cancer microarray data results in the overfitting problem. This article proposes novel hybrid feature selection model called the RBARegulizer model, which is based on two types of feature selection techniques, two RBAs algorithms (ReliefF, MultiSURF) for feature-ranking filters to the most important one's genes, and three regulizer algorithms (Lasso, Elastic Net, Elastic Net CV) to reduce the feature subset, remove the noisy and irrelevant feature to improve the performance and accuracy of cancer (microarray) data classification. For evaluating the model, the different three classifiers SVM, MLP, and random forest with four high-dimensional microarray data for different cancer types were applied. The experimental type shows that our model overcomes the overfitting problem of cancer microarray data. Moreover, the results show that RBARegulizer model is perfect in improving the accuracy of cancer microarray data classification.
机译:癌症是一组涉及异常细胞生长的疾病,其可能蔓延到身体的其他部位。癌症微阵列数据通常包括少量具有大量基因表达水平的样品作为特征。基因表达或微阵列是一种并行监测大量基因表达的技术,使其可用于癌症分类,癌症微阵列数据的高维度导致过度拟合问题。本文提出了一种名为RBaryGulizer模型的新型混合特征选择模型,其基于两种类型的特征选择技术,两个RBAS算法(Rebas算法(Relieff,MultiSurf),用于特征排名过滤器到最重要的一个基因,以及三个调节器算法(套索,弹性网,弹性网CV)以减少特征子集,拆除嘈杂和无关的特征,以提高癌症(微阵列)数据分类的性能和准确性。为了评估模型,应用了不同三种分类器SVM,MLP和具有四种高维微阵列数据的不同癌症类型的随机林。实验类型表明,我们的模型克服了癌症微阵列数据的过度填写问题。此外,结果表明,RBareGulizer模型是完善提高癌症微阵列数据分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号