首页> 外文期刊>Concurrency and computation: practice and experience >Recommendation algorithm based on community structure and user trust
【24h】

Recommendation algorithm based on community structure and user trust

机译:基于社区结构和用户信任的推荐算法

获取原文
获取原文并翻译 | 示例

摘要

While contemporary community-based recommendation algorithms based on a single community structure are more capable of processing large datasets than ever, they lack recommendation precision. This article proposes a collaborative filtering recommendation algorithm that integrates community structure and user implicit trust. The algorithm first applies a method based on the Gaussian function to fill the matrix of item ratings of users to alleviate data sparsity. It then uses the trust matrix to obtain the asymmetric trust relationship of the trustor and trustee, based on which the degree of users' implicit trust is calculated. The users are divided into communities based on the implicit trust degree to determine the influence among users more accurately. The algorithm then predicts the target user's rating using the ratings of users in the community to generate recommendations. To verify the performance of the proposed algorithm, we compared the proposed algorithm with three contemporary algorithms under the same conditions using FilmTrust datasets. The recommendation accuracy as well as the mean absolute error and root mean square error values of the proposed algorithm were better than those of the other four algorithms by approximately 14% and 4%, respectively. The experimental results demonstrate that the proposed algorithm can achieve better recommendation efficiency than existing algorithms.
机译:虽然基于当代的社区社区推荐算法基于单个社区结构的算法比以往任何时候都更能处理大型数据集,但它们缺乏建议精确。本文提出了一种协作过滤推荐算法,其集成了社区结构和用户隐式信任。该算法首先应用基于高斯函数的方法来填充用户的项目额定值矩阵以减轻数据稀疏性。然后,它使用信任矩阵来获得侦查者和受托人的不对称信任关系,基于计算用户的隐式信任程度。用户基于隐性信任程度分为社区,以更准确地确定用户之间的影响。然后,该算法使用社区中的用户的额定值来预测目标用户的评级来生成建议。为了验证所提出的算法的性能,我们将所提出的算法与三个当代算法的使用胶片数据集进行了比较了三种当代算法。建议准确性以及所提出的算法的平均绝对误差和均方根误差和均方的误差分别优于其他四种算法,分别大约14%和4%。实验结果表明,所提出的算法可以实现比现有算法更好的推荐效率。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2021年第20期|e6375.1-e6375.10|共10页
  • 作者单位

    Wuyi Univ Sch Math & Comp Sci Wuyishan Peoples R China|Fujian Prov Dev & Reform Commiss Digital Fujian Tourism Big Data Inst Wuyishan Peoples R China;

    Wuyi Univ Sch Math & Comp Sci Wuyishan Peoples R China|Fujian Prov Dept Educ Key Lab Cognit Comp & Intelligent Informat Proc Wuyishan Peoples R China;

    Xiamen Univ Sch Informat Xiamen Peoples R China;

    Wuyi Univ Sch Math & Comp Sci Wuyishan Peoples R China|Fujian Prov Dev & Reform Commiss Digital Fujian Tourism Big Data Inst Wuyishan Peoples R China;

    Wuyi Univ Sch Math & Comp Sci Wuyishan Peoples R China|Fujian Prov Dept Educ Key Lab Cognit Comp & Intelligent Informat Proc Wuyishan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    community discovery; recommendation algorithm; social network; trust relationship;

    机译:社区发现;推荐算法;社交网络;信任关系;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号