首页> 外文期刊>Concurrency and computation: practice and experience >Dispersed dummy selection approach for location-based services to preempt user-profiling
【24h】

Dispersed dummy selection approach for location-based services to preempt user-profiling

机译:将基于位置的服务分散给抢占用户分析的伪选择方法

获取原文
获取原文并翻译 | 示例

摘要

Location-based services (LBS) provide specific personalized services based on the location information provided by the user. Disclosing the users' private data is a challenging issue prevailing in LBS. Users become victims of online user-profile disclosure risks when they continuously utilize the services and attempt to disclose private data. The proposed dispersed dummy selection-based approaches such as dispersed dummy selection including actual location (DDSIA) and dispersed dummy selection excluding actual location (DDSEA) avert user-profiling issue. The dummy locations are chosen based on the auxiliary information of the location, user, and physical dispersion. The auxiliary information about the location is fetched from the local fog servers, and auxiliary information about the user is stored and retrieved from the cloud storage. An anonymous circular area is considered to ensure the dummy locations are dispersed, and the user-location correlations get dissipated. The detailed analysis of the proposed approaches is explored with the real-world map data, and its effectiveness is verified with simulations using Matlab. In addition, the qualitative analysis tests the resistance of the dummies against human observations. The results obtained substantiate that the proposed approaches are efficient in terms of dispersion degree and resistance to human observations that avert user profiling.
机译:基于位置的服务(LBS)根据用户提供的位置信息提供特定的个性化服务。披露用户的私人数据是LBS普遍存在的具有挑战性的问题。用户成为在线用户配置文件披露风险的受害者,当他们不断利用服务并尝试披露私人数据时。提出的分散的基于虚拟选择的方法,如分散的虚拟选择,包括实际位置(DDSIA)和分散的虚拟选择,不包括实际位置(DDSEA)AVERT用户分析问题。基于位置,用户和物理色散的辅助信息选择伪位置。关于该位置的辅助信息从本地雾服务器获取,并且从云存储存储和检索关于用户的辅助信息。考虑匿名圆形区域以确保伪位置分散,并且用户位置相关性被消散。利用现实世界地图数据探讨了对拟议方法的详细分析,并使用MATLAB模拟验证其有效性。此外,定性分析测试假人对人类观察的阻力。得到的结果证实,所提出的方法在分散度和抗避免用户分析的人类观察的抵抗力方面是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号