首页> 外文期刊>Concurrency and computation: practice and experience >The convolutional neural network approach from electroencephalogram signals in emotional detection
【24h】

The convolutional neural network approach from electroencephalogram signals in emotional detection

机译:从脑电图信号中的情绪检测中的卷积神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

Although brain-computer interfaces (BCI) progress rapidly, the desired success has not been achieved yet. One of these BCI is to detect emotional states in humans. An emotional state is a brain activity consisting of hormonal and mental reasons in the face of events. Emotions can be detected by electroencephalogram (EEG) signals due to these activities. Being able to detect the emotional state from EEG signals is important in terms of both time and cost. In this study, a method is proposed for the detection of the emotional state by using EEG signals. In the proposed method, we aim to classify EEG signals without any transform (Fourier transform, wavelet transform, etc.) or feature extraction method as a pre-processing. For this purpose, convolutional neural networks (CNNs) are used as classifiers, together with SEED EEG dataset containing three different emotional (positive, negative, and neutral) states. The records used in the study were taken from 15 participants in three sessions. In the proposed method, raw channel-time EEG recordings are converted into 28 x 28 size pattern segments without pre-processing. The obtained patterns are then classified in the CNN. As a result of the classification, three emotion performance averages of all participants are found to be 88.84%. Based on the participants, the highest classification performance is 93.91%, while the lowest classification performance is 77.70%. Also, the average f-score is found to be 0.88 for positive emotion, 0.87 for negative emotion, and 0.89 for neutral emotion. Likewise, the average kappa value is 0.82 for positive emotion, 0.81 for negative emotion, and 0.83 for neutral emotion. The results of the method proposed in the study are compared with the results of similar studies in the literature. We conclude that the proposed method has an acceptable level of performance.
机译:虽然脑电电脑接口(BCI)迅速进展,但尚未实现所需的成功。其中一个BCI是检测人类的情绪状态。情绪状态是面对事件的荷尔蒙和心理原因组成的大脑活动。由于这些活动,脑电图(EEG)信号可以检测到情绪。能够检测EEG信号的情绪状态在两次和成本方面都很重要。在该研究中,提出了一种通过使用EEG信号检测情绪状态的方法。在该方法中,我们的目的是在没有任何变换(傅里叶变换,小波变换等)或特征提取方法作为预处理的情况下对EEG信号进行分类。为此目的,卷积神经网络(CNNS)用作分类器,以及包含三种不同情绪(正,负和中性)状态的种子EEG数据集。该研究中使用的记录是从三个会议的15名参与者中获取。在所提出的方法中,原始通道时间EEG记录被转换为28 x 28尺寸的图案段,而无需预处理。然后将所获得的图案分类在CNN中。由于分类,所有参与者的三个情感性能平均数都被发现为88.84%。基于参与者,最高分类性能为93.91%,而最低分类性能为77.70%。此外,对于正情绪的平均f分数,对于正情绪为0.88,对于负面情绪为0.87,中性情绪为0.89。同样,对于正情绪,平均κ值为0.82,为负面情绪为0.81,中性情绪为0.83。该研究提出的方法的结果与文献中类似研究的结果进行了比较。我们得出结论,该方法具有可接受的性能水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号