首页> 外文期刊>Concurrency and computation: practice and experience >A new adjusted Liu estimator for the Poisson regressionmodel
【24h】

A new adjusted Liu estimator for the Poisson regressionmodel

机译:泊松回归模型的新调整刘估计

获取原文
获取原文并翻译 | 示例

摘要

The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors are multicollinear. The performance of MLE is not satisfactory in the presence of multicollinearity. To mitigate this problem, different biased estimators are discussed in the literature, that is, ridge and Liu. However, the drawback of using the traditional Liu estimator is that in most of the times, the shrinkage parameter d, attains a negative value which is the major disadvantage of traditional Liu estimator. So, to overcome this problem, we propose a new adjusted Poisson Liu estimator (APLE) for the PRM which is the robust solution to the problem of multicollinear explanatory variables. For assessment purpose, we perform a theoretical comparison with other competitive estimators. In addition, a Monte Carlo simulation study is conducted to show the superiority of the new estimator. At the end, two real life applications are also considered. From the findings of simulation study and two empirical applications, it is observed that the APLE is the most robust and consistent estimation method as compared to the MLE and other competitive estimators.
机译:Poisson回归模型(PRM)通常在因变量的计数数据形式时应用于情况。为了估计PRM的未知参数,通常使用最大似然估计器(MLE)。然而,当回归量是多型原子的时,它的性能被怀疑。 Mle的性能在多重细胞质的存在下并不令人满意。为了缓解这个问题,在文献中讨论了不同的偏见估计,即岭和刘。然而,使用传统的刘估计器的缺点是在大多数时候,收缩参数D,达到负值,这是传统刘估计器的主要缺点。因此,为了克服这个问题,我们为PRM提出了一个新的调整后的泊松刘估算器(APLE),这是多含量解释变量问题的强大解决方案。对于评估目的,我们与其他竞争性估算者进行理论比较。此外,进行了蒙特卡罗模拟研究以显示新估算器的优越性。最后,还考虑了两个现实生活应用。从仿真研究和两个经验应用的调查结果,观察到,与MLE和其他竞争性估算相比,APL是最坚固且一致的估计方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号