首页> 外文期刊>Concurrency and computation: practice and experience >Hybrid model of generative adversarial network and Takagi-Sugeno for multidimensional incomplete hydrological big data prediction
【24h】

Hybrid model of generative adversarial network and Takagi-Sugeno for multidimensional incomplete hydrological big data prediction

机译:多维不完全水文大数据预测多维不完全水文大数据预测的生成对抗网络和Takagi-sugeno的混合模型

获取原文
获取原文并翻译 | 示例

摘要

The processing of rainfall-runoff transmission in the catchment area is a very complex phenomenon, such as temporal and spatial changes of the catchment characteristics and uncertainties of rainfall patterns. To handle this challenge, data-driven hydrologic models emerge rapidly for the rainfall runoff prediction. However, the incomplete hydrological data constrain the development of digital hydrologic model. This article proposes a rainfall-runoff prediction method of coupling generative adversarial network (GAN) and Takagi-Sugeno (T-S) fuzzy model, in which the GAN is used to generate the data for completing the incomplete hydrological data, and the T-S fuzzy model is utilized for forecasting the rainfall runoff. The presented method is examined by real data in Huaihe basin just considering the precipitation and streamflow. Experiments show that the model combined GAN and T-S can achieve satisfactory prediction results.
机译:在集水区中的降雨径流传输的处理是一种非常复杂的现象,例如节省特征的时间和空间变化和降雨模式的不确定性。 为了处理这一挑战,数据驱动的水文模型迅速出现了降雨径流预测。 然而,不完整的水文数据限制了数字水文模型的发展。 本文提出了耦合生成对抗网络(GaN)和Takagi-Sugeno(TS)模糊模型的降雨 - 径流预测方法,其中GaN用于生成完成不完整水文数据的数据,并且TS模糊模型是 用于预测降雨径流。 通过淮河盆地的实际数据检查所提出的方法,只考虑降水和流流。 实验表明,模型组合GaN和T-S可以实现令人满意的预测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号