...
首页> 外文期刊>Quality Control, Transactions >A Generative Adversarial Network Model for Disease Gene Prediction With RNA-seq Data
【24h】

A Generative Adversarial Network Model for Disease Gene Prediction With RNA-seq Data

机译:RNA-SEQ数据的疾病基因预测生成对抗性网络模型

获取原文
获取原文并翻译 | 示例
           

摘要

Deep learning models often need large amounts of training samples (thousands of training samples) to effectively extract hidden patterns in the data, thus achieving better results. However, in the field of brain-related disease, the omics data obtained by using advanced sequencing technology typically have much fewer patient samples (tens to hundreds of samples). Due to the small sample problem, statistical methods and intelligent machine learning methods have been unable to obtain a convergent gene set when prioritizing biomarkers. Furthermore, mathematical models designed for prioritizing biomarkers perform differently on different datasets. However, the architecture of the generative adversarial network (GAN) can address this bottleneck problem. Through the game between the generator and the discriminator, samples with similar distributions to that of samples in the training set can be generated by the generator, and the prediction accuracy and robustness of the discriminator could be significantly improved. Therefore, in this study, we designed a new generative adversarial network model with a denoising auto-encoder (DAE) as the generator and a multilayer perceptron (MLP) as the discriminator. The prediction residual error was backpropagated to the decoder part of the DAE, modifying the captured probability distribution. Based on this model, we further designed a framework to predict disease genes with RNA-seq data. The deep learning model improves the identification accuracy of disease genes over the-state-of-the-art approaches. An analysis of the experimental results has uncovered new disease-related genes and disease-associated pathways in the brain, which in turn have provided insight into the molecular mechanisms underlying disease phenotypes.
机译:深度学习模型通常需要大量的训练样本(数千个训练样本),以有效提取数据中的隐藏模式,从而实现更好的结果。然而,在脑相关疾病领域中,通过使用高级测序技术获得的OMICS数据通常具有更少的患者样品(数百个样本)。由于样品问题的小,统计方法和智能机器学习方法在优先考虑生物标志物时,无法获得会聚基因。此外,设计用于优先化生物标志物的数学模型在不同的数据集上执行不同的方式。然而,生成的对抗性网络(GaN)的架构可以解决这个瓶颈问题。通过发电机和鉴别器之间的游戏,可以由发电机产生具有与训练集中的样本类似的分布类似的样本,并且可以显着改善鉴别器的预测精度和鲁棒性。因此,在这项研究中,我们设计了一种新的生成对抗网络模型,其具有作为发电机的去噪自动编码器(DAE)和作为鉴别器的多层的Perceptron(MLP)。预测剩余误差被回到DAE的解码器部分,修改捕获的概率分布。基于该模型,我们进一步设计了一种框架,以预测具有RNA-SEQ数据的疾病基因。深度学习模型提高了最先进的方法疾病基因的鉴定准确性。对实验结果的分析揭示了大脑中的新疾病相关基因和病态相关途径,这反过来又提供了对疾病表型的分子机制的洞察力。

著录项

  • 来源
    《Quality Control, Transactions》 |2020年第2020期|37352-37360|共9页
  • 作者单位

    Shanghai Jiao Tong Univ Sch Biomed Engn Shanghai 200030 Peoples R China;

    Shanghai Jiao Tong Univ Sch Biomed Engn Shanghai 200030 Peoples R China;

    Shanghai Jiao Tong Univ Sch Biomed Engn Shanghai 200030 Peoples R China;

    Shanghai Jiao Tong Univ Sch Biomed Engn Shanghai 200030 Peoples R China;

    Shanghai Jiao Tong Univ Sch Biomed Engn Shanghai 200030 Peoples R China|Shanghai Jiao Tong Univ Sch Med Shanghai Mental Hlth Ctr Shanghai Key Lab Psychot Disorders Shanghai 200030 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Denoising auto-encoder; multilayer perceptron; generative adversarial network; RNA-seq data;

    机译:去噪自动编码器;多层的感知;生成的对抗网络;RNA-SEQ数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号