首页> 外文期刊>Concurrency and computation: practice and experience >Classification of epilepsy period based on combination feature extraction methods and spiking swarm intelligent optimization algorithm
【24h】

Classification of epilepsy period based on combination feature extraction methods and spiking swarm intelligent optimization algorithm

机译:基于组合特征提取方法的癫痫时期分类和尖峰智能优化算法

获取原文
获取原文并翻译 | 示例

摘要

Epilepsy seriously damages the physical and mental health of patients. Detection of epileptic EEG signals in different periods can help doctors diagnose the disease. The change of frequency components during epilepsy seizures is obvious, and there may be noises in epilepsy EEG signals. Moreover, epileptic seizures are closely related to the release of neuronal spiking in the brain. In this paper, we propose an approach for epilepsy period classification based on combination feature extraction methods and spiking swarm intelligent optimization classification algorithm. First, combination feature extraction methods take in account both the time-frequency features and principal component features of epilepsy. The time-frequency features are obtained by WPT or STFT-PSD, and noises are removed while extracting principal component features by PCA. Second, spiking swarm intelligent optimization classification algorithm takes advantage of individual cooperation and information interaction with strong robustness. Its simulated neurons are closer to reality, which consider more information and obtain stronger computing power. The experimental results show that the average classification accuracy of the proposed method can reach 98.95% and the highest classification accuracy can reach 100%. Compared with other methods, the proposed method has the best classification performance.
机译:癫痫严重损害了患者的身心健康。在不同时期检测癫痫脑电图信号可以帮助医生诊断疾病。癫痫癫痫发作期间的频率分量的变化是显而易见的,并且在癫痫脑电图信号中可能存在噪声。此外,癫痫发作与大脑中神经元尖刺的释放密切相关。本文提出了一种基于组合特征提取方法和尖峰智能优化分类算法的癫痫时段分类方法。首先,结合特征提取方法考虑到癫痫的时频特征和主要成分特征。时间频率特征是通过WPT或STFT-PSD获得的,并且在提取PCA提取主组件的同时消除噪声。其次,Spiking Swarm智能优化分类算法利用各个合作和信息交互,具有强大的鲁棒性。其模拟的神经元更接近现实,这考虑了更多信息并获得更强大的计算能力。实验结果表明,该方法的平均分类精度可达到98.95%,最高分类精度可达100%。与其他方法相比,所提出的方法具有最佳分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号