首页> 外文期刊>Concurrency and computation: practice and experience >Kernel local outlier factor-based fuzzy support vectormachine for imbalanced classification
【24h】

Kernel local outlier factor-based fuzzy support vectormachine for imbalanced classification

机译:基于内核本地异常因素的模糊支持向量机,用于不平衡分类

获取原文
获取原文并翻译 | 示例

摘要

The problem of imbalanced data classification has become a research hotspot in the field of machine learning. Fuzzy support vector machine (FSVM) is an imbalanced classification processing method based on cost-sensitive theory. The existing methods have cost-sensitive, causing the prior distribution estimation of data inaccurate. This article proposes a novel FSVM algorithm based on the kernel local outlier factor (KLOF-FSVM) for this problem. KLOF calculates the local outlier factor of the sample in the kernel space and assigns an appropriate membership value to the sample. This process enables the algorithm to obtain the distribution information of the data better. Compared with the algorithm based on distance only, KLOF has better robustness. It can expand the value range of majority class samples' membership degree to better balance the important relation between the minority class and the majority class. We selected some datasets in the Keel data repository and used cross-validation to obtain the algorithm's effect under different evaluation indexes such as G-Mean, F1 measure, and area under curve. By comparing with other algorithms, preliminary results show that this method has better classification quality.
机译:数据分类不平衡的问题已成为机器学习领域的研究热点。模糊支持向量机(FSVM)是一种基于成本敏感理论的不平衡分类处理方法。现有方法具有成本敏感,导致现有分发估计数据不准确。本文提出了一种基于内核本地异常因素因子(KLOF-FSVM)的FSVM算法进行此问题。 klof计算内核空间中样本的本地异常因素,并为样本分配适当的隶属关系。该过程使算法能够更好地获得数据的分布信息。与仅基于距离的算法相比,KLOF具有更好的鲁棒性。它可以扩大多数类样本的会员学位的价值范围,以更好地平衡少数阶级和多数阶级之间的重要关系。我们选择在龙骨数据储存库的一些数据集和使用交叉验证,以获得在不同的评价指标,例如G-平均数,F1测量和曲线下面积算法的效果。通过与其他算法进行比较,初步结果表明该方法具有更好的分类质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号