首页> 外文期刊>Concurrency and computation: practice and experience >Content-based and knowledge graph-based paper recommendation: Exploring user preferences with the knowledge graphs for scientific paper recommendation
【24h】

Content-based and knowledge graph-based paper recommendation: Exploring user preferences with the knowledge graphs for scientific paper recommendation

机译:基于内容和知识图形的论文建议:利用知识图表探索用户偏好,为科学论文推荐

获取原文
获取原文并翻译 | 示例

摘要

Researchers usually face difficulties in finding scientific papers relevant to their research interests due to increasing growth. Recommender systems emerge as a leading solution to filter valuable items intelligently. Recently, deep learning algorithms, such as convolutional neural network, improved traditional recommendation technologies, for example, the graph-based or content-based methods. However, existing graph-based methods ignore high-order association between users and items on graphs, and content-based methods ignore global features of texts for explicit user preferences. Therefore, this paper proposes a Content-based and knowledge Graph-based Paper Recommendation method (CGPRec), which uses a two-layer self-attention block to obtain global features of texts for more complete explicit user preferences, and proposes an improved graph convolutional network for modeling high-order associations on the knowledge graph to mine implicit user preferences. And the knowledge graph in this paper is constructed with concept nodes, user nodes, paper nodes, and other meta-data nodes. Experimental results on a public dataset, CiteULike-a, and a real application log dataset, AHData, show that our model outperforms compared with baseline methods.
机译:研究人员通常面临困难,在寻找与其研究兴趣相关的科学论文由于增长的增加而导致。推荐系统出现作为智能过滤有价值物品的领先解决方案。最近,深度学习算法,如卷积神经网络,改进的传统推荐技术,例如基于图形的或基于内容的方法。但是,现有的基于图形的方法忽略了在图形上的用户和项目之间的高阶关联,基于内容的方法忽略了用于显式用户偏好的文本的全局功能。因此,本文提出了一种基于内容和基于知识图形的纸质推荐方法(CGPREC),它使用双层自我关注块来获取文本的全局特征,以获取更完整的显式用户偏好,并提出改进的图形卷积用于在知识图中建模高阶关联的网络来挖掘隐式用户偏好。本文中的知识图形是用概念节点,用户节点,纸张节点和其他元数据节点构建的。在公共数据集,Citeulik-A和实际应用程序日志数据集,AHDATA上的实验结果表明,与基线方法相比,我们的模型优于卓越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号