首页> 外文期刊>Concurrency and computation: practice and experience >An efficient trust-based secure energy-aware clustering to mitigate trust distortion attack in mobile ad-hoc network
【24h】

An efficient trust-based secure energy-aware clustering to mitigate trust distortion attack in mobile ad-hoc network

机译:基于基于信任的安全能量感知群集,以减轻移动ad-hoc网络中的信任失真攻击

获取原文
获取原文并翻译 | 示例

摘要

Trust-aware clustering plays a vital role in addressing the security issues faced by mobile ad-hoc networks (MANETs). The trust worthiness of each participated node is to be estimated for ensuring the secure communications in MANETs. In this article, we propose a new trust-based secure energy-aware clustering (TSEAC) model to mitigate the malicious nodes from the network and form secure energy aware clusters with a cluster head which is more stable and trustworthy. Moreover, two novel algorithms namely energy-efficient trust-aware secure clustering algorithm and filtering untrustworthy recommendation (FUR) algorithm are proposed in this work. Here, the trust value of a node is measured by both direct trust estimation and indirect trust estimation methods using the Beta distribution technique. The trust value of the node is estimated in terms of the behavior of the node. The role of the FUR algorithm is to enhance the clustering process by mitigating the trust-distortion attack. Thus, from the simulation results it is observed that the proposed work, TSEAC outperforms in improving the lifetime of the network by 38% than the other existing work such as CBTRP, AOTDV, and CBRP. Furthermore, TSEAC shows an improvement of 20% to 24% when compared to CBTRP, 27% to 31% in contrast to AOTDV and 35% to 42% superior to CBRP in terms of packet delivery ratio. Similarly, TSEAC shows 22% to 26%, 28% to 33%, and 34% to 38% better throughput in contrast to CBTRP, AOTDV, and CBRP, respectively.
机译:信任感知群集在解决移动ad-hoc网络(船只)所面临的安全问题方面发挥着重要作用。估计每个参与节点的信任值得估计舰队中的安全通信。在本文中,我们提出了一种基于信赖的基于信任的安全能量感知聚类(TSEAC)模型,以减轻网络中的恶意节点,并使用更稳定和值得信赖的集群头来形成安全的能量感知群集。此外,在这项工作中提出了两种新颖的算法即节能信任信息安全聚类算法和过滤不值得信赖的推荐(毛皮)算法。这里,通过使用Beta分配技术的直接信任估计和间接信任估计方法来测量节点的信任值。根据节点的行为估计节点的信任值。毛皮算法的作用是通过减轻信任失真攻击来增强聚类过程。因此,从模拟结果看,观察到所提出的工作,TSEAC优于将网络的寿命改善38%而不是CBTRP,AOTDV和CBRP等其他工作。此外,与CBTRP相比,TSEAC显示出20%至24%,与AOTDV相比,27%至31%,在分组输送比率方面与CBRP相比优于CBRP。同样,TSEAC分别显示22%至26%,28%至33%,与CBTRP,AOTDV和CBRP相比,吞吐量的吞吐量为34%至38%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号