首页> 外文期刊>Concurrency and computation: practice and experience >Gesture recognition based on multi-modal feature weight
【24h】

Gesture recognition based on multi-modal feature weight

机译:基于多模态特征权重的手势识别

获取原文
获取原文并翻译 | 示例

摘要

With the continuous development of sensor technology, the acquisition cost of RGB-D images is getting lower and lower, and gesture recognition based on depth images and Red-Green-Blue (RGB) images has gradually become a research direction in the field of pattern recognition. However, most of the current processing methods for RGB-D gesture images are relatively simple, ignoring the relationship and influence between its two modes, and unable to make full use of the correlation factors between different modes. In view of the above problems, this paper optimizes the effect of RGB-D information processing by considering the independent features and related features of multi-modal data to construct a weight adaptive algorithm to fuse different features. Simulation experiments show that the method proposed in this paper is better than the traditional RGB-D gesture image processing method and the gesture recognition rate is higher. Comparing the current more advanced gesture recognition methods, the method proposed in this paper also achieves higher recognition accuracy, which verifies the feasibility and robustness of this method.
机译:随着传感器技术的不断发展,RGB-D图像的采集成本越来越低,基于深度图像和红色蓝色(RGB)图像的手势识别已经逐渐成为模式领域的研究方向认出。然而,RGB-D手势图像的大多数当前处理方法相对简单,忽略其两种模式之间的关系和影响,并且无法充分利用不同模式之间的相关因子。鉴于上述问题,本文通过考虑多模态数据的独立特征和相关特征来优化RGB-D信息处理的影响,以构建权重自适应算法来融合不同的特征。仿真实验表明,本文提出的方法优于传统的RGB-D手势图像处理方法,手势识别率更高。比较目前更高级的手势识别方法,本文提出的方法还实现了更高的识别准确性,这验证了该方法的可行性和鲁棒性。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2021年第5期|e5991.1-e5991.13|共13页
  • 作者单位

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China;

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China|Wuhan Univ Sci & Technol Inst Precis Mfg Wuhan Peoples R China;

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China|Wuhan Univ Sci & Technol Res Ctr Biomimet Robot & Intelligent Measurement Wuhan Peoples R China;

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China|Wuhan Univ Sci & Technol Res Ctr Biomimet Robot & Intelligent Measurement Wuhan Peoples R China;

    Wuhan Univ Sci & Technol Inst Precis Mfg Wuhan Peoples R China|Wuhan Univ Sci & Technol Res Ctr Biomimet Robot & Intelligent Measurement Wuhan Peoples R China;

    Wuhan Univ Sci & Technol Hubei Key Lab Mech Transmiss & Mfg Engn Wuhan Peoples R China;

    Wuhan Univ Sci & Technol Hubei Key Lab Mech Transmiss & Mfg Engn Wuhan Peoples R China;

    Univ Portsmouth Sch Comp Portsmouth Hants England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gesture recognition; RGB-D; multi-modal fusion; weight adaptation;

    机译:手势识别;RGB-D;多模态融合;重量适应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号