首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Nonparametric Feature Matching Based Conditional Random Fields for Gesture Recognition from Multi-Modal Video
【24h】

Nonparametric Feature Matching Based Conditional Random Fields for Gesture Recognition from Multi-Modal Video

机译:基于非参数特征匹配的条件随机场用于多模态视频的手势识别

获取原文
获取原文并翻译 | 示例

摘要

We present a new gesture recognition method that is based on the conditional random field (CRF) model using multiple feature matching. Our approach solves the labeling problem, determining gesture categories and their temporal ranges at the same time. A generative probabilistic model is formalized and probability densities are nonparametrically estimated by matching input features with a training dataset. In addition to the conventional skeletal joint-based features, the appearance information near the active hand in an RGB image is exploited to capture the detailed motion of fingers. The estimated likelihood function is then used as the unary term for our CRF model. The smoothness term is also incorporated to enforce the temporal coherence of our solution. Frame-wise recognition results can then be obtained by applying an efficient dynamic programming technique. To estimate the parameters of the proposed CRF model, we incorporate the structured support vector machine (SSVM) framework that can perform efficient structured learning by using large-scale datasets. Experimental results demonstrate that our method provides effective gesture recognition results for challenging real gesture datasets. By scoring 0.8563 in the mean Jaccard index, our method has obtained the state-of-the-art results for the gesture recognition track of the 2014 ChaLearn Looking at People (LAP) Challenge.
机译:我们提出了一种新的手势识别方法,该方法基于使用多个特征匹配的条件随机场(CRF)模型。我们的方法解决了标注问题,同时确定了手势类别及其时间范围。通过将输入特征与训练数据集进行匹配,生成的概率模型被形式化,并且概率密度被非参数地估计。除了传统的基于骨骼关节的功能外,还利用RGB图像中活动手附近的外观信息来捕获手指的详细运动。然后,将估计的似然函数用作我们的CRF模型的一元项。平滑项也被并入以增强我们解决方案的时间相干性。然后可以通过应用有效的动态编程技术获得逐帧识别结果。为了估计建议的CRF模型的参数,我们引入了结构化支持向量机(SSVM)框架,该框架可以通过使用大规模数据集执行有效的结构化学习。实验结果表明,我们的方法为具有挑战性的真实手势数据集提供了有效的手势识别结果。通过在平均Jaccard指数中获得0.8563的分数,我们的方法获得了2014年ChaLearn看人(LAP)挑战的手势识别轨迹的最新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号