首页> 外文期刊>Concurrency, practice and experience >A CPU-FPGA heterogeneous approach for biological sequence comparison using high-level synthesis
【24h】

A CPU-FPGA heterogeneous approach for biological sequence comparison using high-level synthesis

机译:使用高级合成的生物序列比较的CPU-FPGA异构方法

获取原文
获取原文并翻译 | 示例

摘要

This article presents a high-level synthesis implementation of the longest common subsequence (LCS) algorithm combined with a weighted-based scheduler for comparing biological sequences prioritizing energy consumption or execution time. The LCS algorithm has been thoroughly tailored using Vivado High-Level Synthesis tool, which is able to synthesize register transfer level (RTL) from high-level language descriptions, such as C/C++. Performance and energy consumption results were obtained with a CPU Intel Core i7-3770 CPU and an Alpha-Data ADM-PCIE-KU3 board that has a Xilinx Kintex UltraScale XCKU060 FPGA chip. We executed a batch of 20 comparisons of sequences on 10k, 20k, and 50k sizes. Our experiments showed that the energy consumption on the combined approach was significantly lower when compared to the CPU, achieving 75% energy reduction on 50k comparisons. We also used the tool proposed in this article to do a case study on Covid-19, with real SARS-CoV-2 sequences, comparing their LCS scores.
机译:本文介绍了最长常见的子序列(LCS)算法的高级合成实现,与基于加权的调度器相结合,用于比较优先考虑能量消耗或执行时间的生物序列。使用Vivado高级综合工具彻底定制了LCS算法,该工具能够从高级语言描述(如C / C ++)合成寄存器传输级别(RTL)。使用CPU Intel Core I7-3770 CPU和具有Xilinx Kintex UltraScale Xcku060 FPGA芯片的CPU Intel Core I7-3770 CPU和Alpha-Data Adm-PCIe-Ku3板获得性能和能源消耗结果。我们在10k,20k和50k尺寸上执行了一批20个序列比较。我们的实验表明,与CPU相比,组合方法的能耗显着降低,实现了75%的能量降低了50K比较。我们还使用本文提出的该工具来对Covid-19进行案例研究,具有真正的SARS-COV-2序列,比较其LCS分数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号