首页> 外文期刊>Concurrency, practice and experience >Spider monkey optimization–based high-level synthesis in VLSI circuits for runtime adaptability
【24h】

Spider monkey optimization–based high-level synthesis in VLSI circuits for runtime adaptability

机译:基于蜘蛛猴优化的基于VLSI电路的高级合成,用于运行时适应性

获取原文
获取原文并翻译 | 示例

摘要

Very-large-scale integration (VLSI) is a procedure of designing integrated circuit (IC) by linking number of transistors into single chip where attaining the higher accuracy is difficult task because of variation in process-voltage-temperature (PVT). This work presents Stochastic Spider Monkey Optimization-based High-Level Synthesis (SSMO-HLS) Model to improve the performance with better runtime adaptability. In SSMO-HLS model, behavioral input is collected and dataflow analysis is carried out to convert input into dataflow diagram (DFD). Then, compilation process detects error functional unit (FU) in DFD. Spider monkey optimization is carried out to find optimal functional unit for performing allocation, scheduling, and binding process. After binding, output circuit gets generated with better runtime adaptability in case of PVT variations. The performance of SSMO-HLS model is carried out using ISCAS'89 Benchmark Dataset where designed model increases FU selection accuracy and reduces error rate and circuit adaptability time when compared to state-of-the-art works.
机译:非常大规模的集成(VLSI)是通过将晶体管的数量链接到单个芯片中设计集成电路(IC)的过程,其中由于过程 - 电压温度(PVT)的变化,难以实现更高的精度是困难的任务。这项工作提出了基于随机蜘蛛猴优化的高级合成(SSMO-HLS)模型,以提高性能,具有更好的运行时适应性。在SSMO-HLS模型中,收集行为输入,并执行DataFlow分析以将输入转换为DataFlow图(DFD)。然后,编译过程检测DFD中的错误功能单元(FU)。进行蜘蛛猴优化,以找到用于执行分配,调度和绑定过程的最佳功能单元。绑定后,在PVT变化的情况下,通过更好的运行时适应性生成输出电路。使用ISCAS'89基准数据集进行SSMO-HLS模型的性能,其中设计的模型提高了FU选择精度,并与最先进的工作相比,减少了误差率和电路适应性时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号