首页> 外文期刊>Concurrency, practice and experience >Enabling data security in data using vertical split with parallel feature selection using meta heuristic algorithms
【24h】

Enabling data security in data using vertical split with parallel feature selection using meta heuristic algorithms

机译:使用Meta Heuuristic算法使用垂直分割有用垂直分割的数据中的数据安全性

获取原文
获取原文并翻译 | 示例

摘要

Big data is the emerging trend in modern science that deals with datasets larger and more complex that cannot be dealt by the traditional data processing techniques. This seems to be the core of current technology and business. In practice, many criteria should be considered in the implementation of this technique. The way of the search space for finding potential subsets of features and prediction performance of classifiers are major important issue. To solve this issue, feature selection methods are introduced in the recent work. In the feature selection algorithm, Non-deterministic Polynomial (NP) Hard, and searching the space has been becomes more difficult task. To solve this problem, this work provides a new approach toward feature selection based on Vertical Split Group FireFly (VSGFF) algorithm. FF algorithm gets its inspiration from social aspects of real fireflies. At the same time, VSGFF is proposed with the principle of multiple clusters to avoid privacy problem. Finally, Naive Bayes (NB), K Nearest Neighbor (KNN), and Multi-Layer Perceptron Neural Network (MLPNN) classification algorithms are proposed for big data classification. Experimental outcomes depicts that proposed technique improves classification accuracy by 4% compared to traditional vertical split firefly algorithm.
机译:大数据是现代科学的新兴趋势,涉及数据集更大,更复杂,无法通过传统的数据处理技术进行处理。这似乎是当前技术和业务的核心。在实践中,在实现这种技术的实施中应考虑许多标准。用于查找分类器的特征潜在子集和预测性能的搜索空间的方式是主要的重要问题。为解决此问题,在最近的工作中引入了功能选择方法。在特征选择算法中,难以确定的非确定性多项式(NP),并且搜索空间已经变得更加困难。为了解决这个问题,这项工作为基于垂直分割组FiRFFLY(VSGFF)算法的特征选择提供了一种新方法。 FF算法从真正的萤火虫的社交方面获得了它的灵感。与此同时,vsgff是以多集群的原则提出的,以避免隐私问题。最后,为大数据分类提出了Naive Bayes(NB),K最近邻(KNN)和多层的Perceptron神经网络(MLPNN)分类算法。实验结果描绘了与传统的垂直分流萤火虫算法相比,所提出的技术通过4%提高了分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号