首页> 外文期刊>Concurrency, practice and experience >Compact in-memory representation of large graph databases for efficient mining of maximal frequent sub graphs
【24h】

Compact in-memory representation of large graph databases for efficient mining of maximal frequent sub graphs

机译:大图数据库的紧凑型内存表示,用于最大频繁子图的有效挖掘

获取原文
获取原文并翻译 | 示例

摘要

Complex networks have been used in many scientific disciplines like sociology, microbiology, and telecommunication to represent the interactions among them. Graphs are generally used for representing such complex networks. Mining significant frequent patterns from graph databases has been a challenging area of research. A number of sub graph mining algorithms have been proposed for finding frequent fragments in molecular databases. A very few algorithms have been proposed for mining frequent patterns from large communication networks. All these algorithms perform well on medium size networks and fail on very large graphs. The scalability of these algorithms has been an issue because of the enormous memory requirements and also due to the exponential number of frequent sub graphs possible. In this paper, we propose a compact way of representing graph databases and also use it in a maximal frequent sub graph mining algorithm. The algorithm is found to be efficient and scalable to very large graph databases.
机译:复杂的网络已被用于许多科学学科,如社会学,微生物学和电信,以代表它们之间的互动。图通常用于表示这种复杂网络。从图数据库中挖掘显着的频繁模式是一个具有挑战性的研究领域。已经提出了许多子图形挖掘算法用于在分子数据库中找到频繁的碎片。已经提出了来自大型通信网络的频繁模式的很少的算法。所有这些算法在中等大小网络上执行良好,并且在非常大的图形上失败。由于巨大的内存要求,这些算法的可扩展性是一个问题,也是由于可能的频繁子图数的指数数量。在本文中,我们提出了一种表示图形数据库的紧凑方式,并在最大频繁的子图挖掘算法中使用它。发现该算法对非常大的图形数据库有效和可伸缩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号