首页> 外文期刊>Knowledge-Based Systems >An efficient mining algorithm for maximal weighted frequent patterns in transactional databases
【24h】

An efficient mining algorithm for maximal weighted frequent patterns in transactional databases

机译:事务数据库中最大加权频繁模式的有效挖掘算法

获取原文
获取原文并翻译 | 示例

摘要

In the field of data mining, there have been many studies on mining frequent patterns due to its broad applications in mining association rules, correlations, sequential patterns, constraint-based frequent patterns, graph patterns, emerging patterns, and many other data mining tasks. We present a new algorithm for mining maximal weighted frequent patterns from a transactional database. Our mining paradigm prunes unimportant patterns and reduces the size of the search space. However, maintaining the anti-monotone property without loss of information should be considered, and thus our algorithm prunes weighted infrequent patterns and uses a prefix-tree with weight-descending order. In comparison, a previous algorithm, MAFIA, exponentially scales to the longest pattern length. Our algorithm outperformed MAFIA in a thorough experimental analysis on real data. In addition, our algorithm is more efficient and scalable.
机译:在数据挖掘领域,由于其在挖掘关联规则,关联,顺序模式,基于约束的频繁模式,图模式,新兴模式以及许多其他数据挖掘任务中的广泛应用,因此对挖掘频繁模式进行了许多研究。我们提出了一种新的算法,用于从事务数据库中挖掘最大加权频繁模式。我们的挖掘范例修剪了不重要的模式并减小了搜索空间的大小。然而,应该考虑在不损失信息的情况下保持抗单调性,因此我们的算法会修剪加权的不频繁模式,并使用权重降序的前缀树。相比之下,以前的算法MAFIA会按指数比例缩放到最长图案长度。在对真实数据进行全面的实验分析后,我们的算法优于MAFIA。此外,我们的算法更加有效和可扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号