首页> 外文期刊>Concurrency, practice and experience >Intrusion detection system based on GA-fuzzy classifier for detecting malicious attacks
【24h】

Intrusion detection system based on GA-fuzzy classifier for detecting malicious attacks

机译:基于GA-FUZZY分类器的入侵检测系统检测恶意攻击

获取原文
获取原文并翻译 | 示例

摘要

Usage of computer resources, being a very important part in day to day life, it is to be noticed that the security threats have also increased. Hence, Intrusion Detection System (IDS) is used for detection and prevention of computer resources from security threats generated by malicious attackers. Existing techniques like encryption mechanism, authentication mechanism, and access control do not support for analyzing large volume of data and it is efficient only in the case of limited number of attacks. Attackers attack the computer resources based on the weakness of the security level in the Information system and they can violate the rules and regulation of computer system (Confidentiality, Integrity, and Availability) easily. Handling threats on computer resources still remains a challenging issue. Distributed Denial of Service attacks (DDoS) is an important attack that sends more than one number of requests to the destination server from multiple compromised systems that makes the Information system unable to process the request thereby resulting in non-response to the attacker as well as normal end user, which results in large number of false alarms and less detection accuracy rates. We propose a new model called hybrid-based intrusion detection system (GA-Fuzzy) for handling large volume NSL-KDD Dataset for detecting attacks effectively and for reducing misclassification alarm rate. Here, Genetic algorithm (GA) is used for creating new pattern (new features, records) for training the Fuzzy classifier effectively. We use Principle Component Analysis (PCA) as a feature selection method that eliminates irrelevant and redundant data from the NSL-KDD dataset that improves the efficiency and to attain 99.96% detection accuracy and 0.04% false alarm rate.
机译:计算机资源的使用情况,成为日常生活中的一个非常重要的部分,应该被注意到安全威胁也增加了。因此,入侵检测系统(IDS)用于检测和预防恶意攻击者生成的安全威胁计算机资源。现有技术,如加密机制,认证机制和访问控制不支持分析大量数据,并且仅在有限次攻击情况下有效。攻击者基于信息系统中安全级别的弱点攻击计算机资源,他们可以轻松违反计算机系统(机密性,完整性和可用性)的规则和调节。处理计算机资源的威胁仍然是一个具有挑战性的问题。分布式拒绝服务攻击(DDOS)是从多个受损系统向目标服务器发送多个请求的重要攻击,使得信息系统无法处理请求,从而导致攻击者的不响应正常的最终用户,这导致大量的误报和较少的检测精度率。我们提出了一种称为混合的入侵检测系统(GA-FUZZY)的新模型,用于处理大容量NSL-KDD数据集以有效地检测攻击,并降低错误分类报警速率。这里,遗传算法(GA)用于创建用于有效训练模糊分类器的新模式(新功能,记录)。我们使用原理分量分析(PCA)作为特征选择方法,从NSL-KDD数据集中消除了来自NSL-KDD数据集的无关和冗余数据,提高了效率,并获得了99.96%的检测精度和0.04%的误报率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号