首页> 外文期刊>Concurrency, practice and experience >Nonvolatile kernel rootkit detection using cross-view clean boot in cloud computing
【24h】

Nonvolatile kernel rootkit detection using cross-view clean boot in cloud computing

机译:非易失性内核rootkit检测在云计算中使用跨视图清洁启动

获取原文
获取原文并翻译 | 示例

摘要

Malware attacks on kernel rootkits have become increasingly sophisticated and extremely difficult to detect; hence, they have a reign of power over the functionalities of the kernel. These kernel rootkits adopt stealth techniques to conceal the system processes, kernel modules, and other control structures, making it quite a challenge to detect their presence in the victim system. Many current efforts to detect the rootkits are based on known sources and are primarily system specific and hence are ineffective for newly mutating, hidden, and unknown rootkits. Therefore, in this paper, a kernel rootkit hidden file detection view (KRHFDV) system is proposed to detect such rootkits by identifying hidden files. This detection process uses a cross-view clean-boot-based approach and defines a process monitoring framework that continuously maintains a list of active files and can detect both known and unknown rootkits with minimal performance overhead. KRHFDV overcomes the semantic gap by intercepting system call events of the tainted operating system in a nonintrusive manner and monitors the kernel to reconstruct a semantic-level process information structure. The results from the extensive performance evaluation carried out with 64 rootkit samples in a cloud environment for both Linux and Windows kernels show that KRHFDV is able to identify file hiding behaviours of all samples in the least detection time.
机译:对内核rootkits的恶意软件攻击已经变得越来越复杂,非常难以检测;因此,它们对内核功能有一个权力。这些内核rootkits采用隐形技术来隐藏系统流程,内核模块和其他控制结构,使其在受害者系统中发现其存在是一项挑战。检测rootkits的许多目前努力基于已知的来源,主要是系统特定的,因此对于新突变,隐藏和未知的rootkit来说是无效的。因此,在本文中,建议通过识别隐藏文件来检测此rootkits的内核rootkit隐藏文件检测视图(KRHFDV)系统。该检测过程使用基于跨视图的Clean-Boot的方法,并定义了一个过程监控框架,该框架连续维护活动文件列表,可以检测具有最小性能开销的已知和未知rootkits。 KRHFDV通过以非识别方式拦截受污染的操作系统的系统呼叫事件来克服语义差距,并监视内核以重建语义级过程信息结构。对于Linux和Windows内核的云环境中的64个rootkit样本进行了广泛的性能评估结果表明,KRHFDV能够在最小检测时间中识别所有样本的文件隐藏行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号