首页> 外文期刊>Concurrency, practice and experience >Exploiting historical data: Pruning autotuning spaces and estimating the number of tuning steps
【24h】

Exploiting historical data: Pruning autotuning spaces and estimating the number of tuning steps

机译:利用历史数据:修剪自动空间并估算调谐步骤的数量

获取原文
获取原文并翻译 | 示例

摘要

Autotuning, the practice of automatic tuning of applications to provide performance portability, has received increased attention in the research community, especially in high performance computing. Ensuring high performance on a variety of hardware usually means modifications to the code, often via different values of a selected set of parameters, such as tiling size, loop unrolling factor, or data layout. However, the search space of all possible combinations of these parameters can be large, which can result in cases where the benefits of autotuning are outweighed by its cost, especially with dynamic tuning. Therefore, estimating the tuning time in advance or shortening the tuning time is very important in dynamic tuning applications. We have found that certain properties of tuning spaces do not vary much when hardware is changed. In this article, we demonstrate that it is possible to use historical data to reliably predict the number of tuning steps that is necessary to find a well-performing configuration and to reduce the size of the tuning space. We evaluate our hypotheses on a number of HPC benchmarks written in CUDA and OpenCL, using several different generations of GPUs and CPUs.
机译:自动调整的实践,应用程序的自动调整提供性能便携性,在研究界受到了更多的关注,尤其是在高性能计算中。确保各种硬件上的高性能通常表示对代码的修改,通常通过所选参数集的不同值,例如平铺大小,循环展开因子或数据布局。然而,这些参数的所有可能组合的搜索空间都可以很大,这可能导致自动调谐的自动调谐超过自动调谐的情况。因此,预先估计调谐时间或缩短调谐时间在动态调谐应用中非常重要。我们发现,当硬件改变时,调谐空间的某些属性不会变化。在本文中,我们证明可以使用历史数据来可靠地预测找到良好的配置所需的调整步骤的数量,并减小调谐空间的大小。我们使用几代GPU和CPU在CUDA和OpenCL编写的许多HPC基准上评估我们的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号