首页> 外文期刊>Concurrency, practice and experience >Echo state network-based feature extraction for efficient color image segmentation
【24h】

Echo state network-based feature extraction for efficient color image segmentation

机译:基于Echo状态网络的特征提取,用于高效彩色图像分割

获取原文
获取原文并翻译 | 示例

摘要

Image segmentation plays a crucial role in many image processing and understanding applications. Despite the huge number of proposed image segmentation techniques, accurate segmentation remains a significant challenge in image analysis. This article investigates the viability of using echo state network (ESN), a biologically inspired recurrent neural network, as features extractor for efficient color image segmentation. First, an ensemble of initial pixel features is extracted from the original images and injected into the ESN reservoir. Second, the internal activations of the reservoir neurons are used as new pixel features. Third, the new features are classified using a feed forward neural network as a readout layer for the ESN. The quality of the pixel features produced by the ESN is evaluated through extensive series of experiments conducted on real world image datasets. The optimal operating range of different ESN setup parameters for producing competitive quality features is identified. The performance of the proposed ESN-based framework is also evaluated on a domain-specific application, namely, blood vessel segmentation in retinal images where experiments are conducted on the widely used digital retinal images for vessel extraction (DRIVE) dataset. The obtained results demonstrate that the proposed method outperforms state-of-the-art general segmentation techniques in terms of performance with an F-score of 0.92 +/- 0.003 on the segmentation evaluation dataset. In addition, the proposed method achieves a comparable segmentation accuracy (0.9470) comparing with reported techniques of segmentation of blood vessels in images of retina and outperform them in terms of processing time. The average time required by our technique to segment one retinal image from DRIVE dataset is 8 seconds. Furthermore, empirically derived guidelines are proposed for adequately setting the ESN parameters for effective color image segmentation.
机译:图像分割在许多图像处理和理解应用程序中起着至关重要的作用。尽管提出了大量提出的图像分割技术,但精确的分割仍然是图像分析中的重大挑战。本文调查使用回声状态网络(ESN),生物启发的经常性神经网络的可行性,作为有效彩色图像分割的特征提取器。首先,从原始图像中提取初始像素特征的集合并注入ESN储库。其次,储层神经元的内部激活用作新像素特征。第三,使用前锋神经网络作为ESN的读出层分类新功能。通过在现实世界图像数据集上进行的广泛的一系列实验,评估由ESN产生的像素特征的质量。鉴定了用于产生竞争质量特征的不同ESN设置参数的最佳工作范围。在域特定应用中还评估了所提出的ESN的框架的性能,即视网膜图像中的血管分割,其中在广泛使用的数字视网膜图像上进行实验,用于血管提取(驱动)数据集。所得结果表明,该方法在分割评估数据集上的F分数为0.92 +/- 0.003的性能方面优于最先进的一般分段技术。此外,该方法实现了可比较的分割精度(0.9470),比较与视网膜图像中的血管分段的报告的技术相比,并在处理时间方面优于它们。我们的技术从驱动数据集分段一个视网膜图像所需的平均时间为8秒。此外,提出了用于充分设置有效彩色图像分割的ESN参数的经验导出的指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号