首页> 外文期刊>Concurrency, practice and experience >Adjoin: A causal consistency model based on the adjacency list in a distributed system
【24h】

Adjoin: A causal consistency model based on the adjacency list in a distributed system

机译:毗邻:基于分布式系统中的邻接列表的因果关系模型

获取原文
获取原文并翻译 | 示例

摘要

Data consistency is a critical topic in distributed systems. In existing consistency models, causal consistency has attracted a significant amount of attention because it can satisfy high-performance requirements even in the presence of network partitions. At present, most of the causal consistency models face a tradeoff between throughput and update visibility. Simultaneously, they cannot take full advantage of partial geo-replication. To resolve the problems, this paper proposes a causal consistency model that supports partial replication using the adjacency list, called Adjoin. In Adjoin, each data center (DC) stores only a subset of the full data, by reading adjacency relationships, and the relevant nodes quickly reach synchronization. We also introduce the Adjacency Stable Vector and Adjacency Dependency Set to capture causality, which reduces the system storage overhead. We evaluate Adjoin with different workloads on a cloud platform using multiple sites. The results show that Adjoin has good performance in terms of throughput and update visibility compared with previous causal consistency models.
机译:数据一致性是分布式系统中的关键主题。在现有的一致性模型中,因果关系引起了大量的关注,因为即使在存在网络分区的情况下也可以满足高性能要求。目前,大多数因果一致性模型面临吞吐量和更新可见性之间的权衡。同时,它们无法充分利用部分地理复制。为了解决问题,本文提出了一种因果关系模型,支持使用邻接列表的部分复制,称为毗邻。在邻接中,每个数据中心(DC)仅通过读取邻接关系存储完整数据的子集,并且相关节点快速达到同步。我们还介绍了邻接稳定的向量和邻接依赖性设置以捕获因果关系,这减少了系统存储开销。我们使用多个站点评估在云平台上的不同工作负载进行邻接。结果表明,与先前的因果关系模型相比,邻接在吞吐量和更新可见性方面具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号