首页> 外文期刊>Concurrency, practice and experience >A parallel tree node splitting criterion for fuzzy decision trees
【24h】

A parallel tree node splitting criterion for fuzzy decision trees

机译:模糊决策树的并行树节点拆分标准

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy decision trees are one of the most important extensions of decision trees for symbolicknowledge acquisition by fuzzy representation. Many fuzzy decision trees employ fuzzy informationgain as ameasure to construct the tree node splitting criteria. These criteria play a criticalrole in the construction of decision trees. However, many of the criteria can only work well onsmall-scale ormedium-scale data sets, and cannot directly deal with large-scale data sets on theaccount of some limiting factors such as memory capacity, execution time, and data complexity.Parallel computing is one way to overcome these problems; in particular, MapReduce is onemainstream solution of parallel computing. In this paper, we design a parallel tree node splittingcriterion (MR-NSC) based on fuzzy information gain via MapReduce, which is completedequivalent to the traditional unparallel splitting rule. The experimental studies verify the equivalencybetween the proposed MR-NSC algorithm and the traditional unparallel way through 22UCI benchmark data sets. Furthermore, the feasibility and parallelism are also studied on twolarge-scale data sets.
机译:模糊决策树是符号决策树最重要的延伸之一模糊代表知识获取。许多模糊决策树采用模糊信息获得Amasure以构建树节点拆分标准。这些标准发挥着关键的决策树建设中的作用。然而,许多标准只能良好工作小规模或Medium-Scale数据集,不能直接处理大规模的数据集描述一些限制因素,如内存容量,执行时间和数据复杂性。并行计算是克服这些问题的一种方法;特别是mapreduce是一个并行计算主流解决方案。在本文中,我们设计了一个并行树节点拆分基于通过MapReduce的模糊信息增益,标准(MR-NSC),完成相当于传统的无与伦比分裂规则。实验研究验证了等价在拟议的MR-NSC算法和通过22的传统无与伦比的方式之间UCI基准数据集。此外,还研究了两个可行性和平行性大规模数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号