首页> 外文期刊>Concurrency, practice and experience >A parallel tree node splitting criterion for fuzzy decision trees
【24h】

A parallel tree node splitting criterion for fuzzy decision trees

机译:模糊决策树的并行树节点分裂准则

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy decision trees are one of the most important extensions of decision trees for symbolicknowledge acquisition by fuzzy representation. Many fuzzy decision trees employ fuzzy informationgain as ameasure to construct the tree node splitting criteria. These criteria play a criticalrole in the construction of decision trees. However, many of the criteria can only work well onsmall-scale ormedium-scale data sets, and cannot directly deal with large-scale data sets on theaccount of some limiting factors such as memory capacity, execution time, and data complexity.Parallel computing is one way to overcome these problems; in particular, MapReduce is onemainstream solution of parallel computing. In this paper, we design a parallel tree node splittingcriterion (MR-NSC) based on fuzzy information gain via MapReduce, which is completedequivalent to the traditional unparallel splitting rule. The experimental studies verify the equivalencybetween the proposed MR-NSC algorithm and the traditional unparallel way through 22UCI benchmark data sets. Furthermore, the feasibility and parallelism are also studied on twolarge-scale data sets.
机译:模糊决策树是决策树通过模糊表示获取符号 r 知识的最重要扩展之一。许多模糊决策树都采用模糊信息 r n作为度量来构造树节点分裂准则。这些标准在决策树的构建中起着至关重要的作用。但是,许多标准只能在小型或中型数据集上很好地发挥作用,而不能根据诸如内存容量,执行时间等限制因素直接处理大型数据集。 ,以及数据的复杂性。 r n并行计算是克服这些问题的一种方法;特别是MapReduce是并行计算的一种主流解决方案。本文基于MapReduce设计的基于模糊信息获取的并行树节点分裂(MR-NSC),其完成程度与传统的非并行分裂规则相当。实验研究通过22 r nUCI基准数据集验证了所提出的MR-NSC算法与传统的非并行方式之间的等效性。此外,还在两个 r n大型数据集上研究了可行性和并行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号