首页> 外文期刊>Concurrency and Computation >Improving parallel efficiency for asynchronous graph analytics using Gauss-Seidel-based matrix computation
【24h】

Improving parallel efficiency for asynchronous graph analytics using Gauss-Seidel-based matrix computation

机译:基于Gauss-Seidel的矩阵计算,提高异步图分析的并行效率

获取原文
获取原文并翻译 | 示例

摘要

Graph analytics is extensively used in big-data applications such as social networks, web analysis,bio-informatics, etc. Most graph processing frameworks adopt vertex-centric model due toits ease of use and programming. However, when dealing with asynchronous graph analytics,frameworks based on vertex programming perform inefficiently. The reason is that first, vertexprogramming must guarantee the sequential consistency, which means frequent use of locksor atomic operations, and second, the algorithms are parallelized in vertex level and latentparallelismof the algorithms cannot be exploited. To improve parallel efficiency of asynchronousgraph processing, the Gauss-Seidel style algorithms in particular, this paperproposes a schedulingmodel using Gauss-Seidel-based matrix computation, which converts the vertex programminginto two main matrix operations and then algorithms are parallelized by row and columnvectors. Compared to vertex programming, our model parallelizes algorithms in a finer wayto exploit more latent parallelism, while retains the ease-of-programming advantage of vertexprogramming. Instead of using locks to guarantee the sequential consistency, our model uses ahybrid synchronization policy to reduce serializability among threads and overheads of contextswitching. Furthermore, this model strengthens locality of the program. Experiment results showthat our model outperforms vertex-centric asynchronous frameworks in both performance andscalability. Moreover, it even surpasses the matrix-based synchronous framework GraphMatwith some non-Gauss-Seidel style algorithms.
机译:图分析广泛用于大数据应用,如社交网络,Web分析,生物信息学等。大多数图表处理框架采用了顶视图主模型它的易用性和编程。但是,在处理异步图析分析时,基于顶点编程的框架效率低下。原因是首先,顶点编程必须保证顺序一致性,这意味着频繁使用锁或原子操作,第二,算法在顶点水平和潜在的算法中并行化无法利用算法的并行性。提高异步的平行效率图形处理,特别是高斯-Seidel样式算法,本文符合调度模型使用基于Gauss-Seidel的矩阵计算,它转换顶点编程进入两个主矩阵操作,然后通过行和列并行化算法vectors。与顶点编程相比,我们的模型以更精细的方式并行化算法利用更潜行的并行性,同时保留顶点的易于编程优势编程。而不是使用锁来保证顺序一致性,而是我们的模型使用混合同步策略,以减少线程之间的序列化和上下文的开销交换。此外,这种模型加强了程序的局部性。实验结果表明我们的模型在性能和性能中表现出顶部的异步框架可扩展性。此外,它甚至超过基于矩阵的同步框架GraphMat使用一些非高斯Seidel风格算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号