首页> 外文期刊>Concurrency and Computation >Improving parallel efficiency for asynchronous graph analytics using Gauss-Seidel-based matrix computation
【24h】

Improving parallel efficiency for asynchronous graph analytics using Gauss-Seidel-based matrix computation

机译:使用基于Gauss-Seidel的矩阵计算提高异步图分析的并行效率

获取原文
获取原文并翻译 | 示例

摘要

Graph analytics is extensively used in big-data applications such as social networks, web analysis,bio-informatics, etc. Most graph processing frameworks adopt vertex-centric model due toits ease of use and programming. However, when dealing with asynchronous graph analytics,frameworks based on vertex programming perform inefficiently. The reason is that first, vertexprogramming must guarantee the sequential consistency, which means frequent use of locksor atomic operations, and second, the algorithms are parallelized in vertex level and latentparallelismof the algorithms cannot be exploited. To improve parallel efficiency of asynchronousgraph processing, the Gauss-Seidel style algorithms in particular, this paperproposes a schedulingmodel using Gauss-Seidel-based matrix computation, which converts the vertex programminginto two main matrix operations and then algorithms are parallelized by row and columnvectors. Compared to vertex programming, our model parallelizes algorithms in a finer wayto exploit more latent parallelism, while retains the ease-of-programming advantage of vertexprogramming. Instead of using locks to guarantee the sequential consistency, our model uses ahybrid synchronization policy to reduce serializability among threads and overheads of contextswitching. Furthermore, this model strengthens locality of the program. Experiment results showthat our model outperforms vertex-centric asynchronous frameworks in both performance andscalability. Moreover, it even surpasses the matrix-based synchronous framework GraphMatwith some non-Gauss-Seidel style algorithms.
机译:图形分析广泛用于社交网络,Web分析,生物信息学等大数据应用程序中。由于易于使用和编程,大多数图形处理框架都采用以顶点为中心的模型。但是,在处理异步图分析时,基于顶点编程的框架工作效率低下。原因是,首先,顶点 r n编程必须保证顺序一致性,这意味着频繁使用锁 r 无原子操作;其次,算法在顶点级别上并行化,并且算法的潜在 r n并行性无法实现。被利用。为了提高异步 r n图形处理的并行效率,特别是Gauss-Seidel样式算法,本文提出了一种基于基于Gauss-Seidel的矩阵计算的调度 r n模型,该模型将顶点编程 r n转换为两个主矩阵操作,然后通过行和列 r n向量对算法进行并行化。与顶点编程相比,我们的模型以更好的方式并行化算法,以利用更多潜在的并行性,同时保留了顶点编程的易于编程的优势。我们的模型没有使用锁来保证顺序的一致性,而是使用混合同步策略来减少线程之间的可序列化性以及上下文切换的开销。此外,此模型增强了程序的本地性。实验结果表明,我们的模型在性能和可扩展性方面均优于以顶点为中心的异步框架。而且,它甚至以一些非高斯-赛德尔风格的算法超越了基于矩阵的同步框架GraphMat r n。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号