首页> 外文期刊>Concurrency, practice and experience >An under-sampled software defect prediction method based on hybrid multi-objective cuckoo search
【24h】

An under-sampled software defect prediction method based on hybrid multi-objective cuckoo search

机译:基于混合多目标布谷鸟搜索的欠采样软件缺陷预测方法

获取原文
获取原文并翻译 | 示例

摘要

Both the problem of class imbalance in datasets and parameter selection of Support Vector Machine (SVM) are crucial to predict software defects. However, there is no one working to solve these problems synchronously at present. To tackle this problem, a hybrid multi-objective cuckoo search under-sampled software defect prediction model based on SVM (HMOCS-US-SVM) is proposed to solve synchronously above two problems. Firstly, a hybrid multi-objective cuckoo search with dynamical local search (HMOCS) is utilized to select synchronously the non-defective sampling and optimize the parameters of SVM. Then, three under-sampled methods for decision region range are proposed to select the non-defective modules. In the simulation, the three indicators, including the false positive rate (pf), the probability of detection (pd), and G-mean, are employed to measure the performance of the proposed algorithm. In addition, eight datasets from Promise database are selected to verify the proposed software defect predication model. Comparing with the result of eight prediction models, the proposed method comes into effect on solving software defect prediction problem.
机译:数据集中的类不平衡问题和支持向量机(SVM)的参数选择对于预测软件缺陷都至关重要。但是,目前没有人致力于同步解决这些问题。针对这一问题,提出了一种基于支持向量机的混合多目标布谷鸟搜索欠采样软件缺陷预测模型(HMOCS-US-SVM),以同时解决上述两个问题。首先,利用混合多目标布谷鸟搜索与动态局部搜索(HMOCS)来同步选择无缺陷采样并优化支持向量机的参数。然后,提出了三种用于决策区域范围的欠采样方法来选择无缺陷的模块。在仿真中,使用了三个指标,包括误报率(pf),检测概率(pd)和G均值,来衡量所提出算法的性能。此外,从Promise数据库中选择了八个数据集以验证所提出的软件缺陷预测模型。与八个预测模型的结果进行比较,提出的方法对解决软件缺陷的预测问题生效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号