首页> 外文期刊>Concurrency, practice and experience >An effective deep learning neural network model for short-term load forecasting
【24h】

An effective deep learning neural network model for short-term load forecasting

机译:有效的短期负荷预测深度学习神经网络模型

获取原文
获取原文并翻译 | 示例

摘要

Energy load forecasting plays an important role in the smart grid, which can affect the promoting energy production and consumption decision-making processes. In this paper, the state-of-the-art deep learning (DL) neural models are used in the short-term load forecasting, including the multilayer perceptron (MLP), the convolutional neural network (CNN), and the long short-term memory (LSTM). A novel loss function is proposed for the load forecasting, and two commonly used benchmarks are used to verify the validity of the proposed function. The simulation results show that the mean absolute percentage error (MAPE) of the proposed loss function is 19.63% lower than cross-entropy and 2.34% lower than mean absolute error (MAE). We compared the mentioned neural networks in different aspects, and the results show that in energy load forecasting, CNN has superior performance than MLP and LSTM in terms of high accuracy and robustness to weather changes.
机译:能源负荷预测在智能电网中起着重要作用,它会影响促进能源生产和消费决策的过程。本文将最新的深度学习(DL)神经模型用于短期负荷预测,包括多层感知器(MLP),卷积神经网络(CNN)和长短期神经网络。术语记忆(LSTM)。提出了一种新颖的损耗函数用于负荷预测,并使用两个常用的基准来验证所提出函数的有效性。仿真结果表明,所提出的损失函数的平均绝对百分比误差(MAPE)比交叉熵低19.63%,比平均绝对误差(MAE)低2.34%。我们在不同方面对上述神经网络进行了比较,结果表明,在能量负荷预测中,CNN在对天气变化的准确性和鲁棒性方面均优于MLP和LSTM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号