首页> 外文期刊>Concurrency, practice and experience >E-Bayesian and hierarchical Bayesian estimations for parallel system model in the presence of masked data
【24h】

E-Bayesian and hierarchical Bayesian estimations for parallel system model in the presence of masked data

机译:存在屏蔽数据的并行系统模型的E-贝叶斯和分层贝叶斯估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the statistical analysis of parallel system with inverse Weibull distributed components. Due to cost and time constraints, the causes of system failures are masked and the type-II censored observations might occur in the collected data. Under the symmetric and asymmetric loss functions, the expected Bayesian (E-Bayesian) method and the hierarchical Bayesian method are proposed to estimate the parameters, as well as the reliability function. Numerical simulations using the Monte Carlo (MC) method are given to demonstrate the performances of the estimations under different masking levels and effective sample sizes. Finally, one data set is analyzed for illustrative purpose.
机译:在本文中,我们考虑具有逆威布尔分布分量的并行系统的统计分析。由于成本和时间的限制,系统故障的原因被掩盖了,并且在收集的数据中可能会进行II型检查。在对称和非对称损失函数下,提出了期望贝叶斯(E-Bayesian)方法和分层贝叶斯方法来估计参数以及可靠性函数。给出了使用蒙特卡洛(MC)方法的数值模拟,以证明在不同掩蔽水平和有效样本量下的估计性能。最后,出于说明目的分析了一个数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号