首页> 外文期刊>Concurrency, practice and experience >Web service recommendation based on time-aware users clustering and multi-valued QoS prediction
【24h】

Web service recommendation based on time-aware users clustering and multi-valued QoS prediction

机译:基于时间感知用户聚类和多值QoS预测的Web服务推荐

获取原文
获取原文并翻译 | 示例

摘要

With the growing number of functionally similar services over the Internet, recommendation techniques become a natural choice to cope with the challenging task of optimal service selection, and to help consumers satisfy their needs and preferences. However, most existing models on service recommendation are static, while in the real world, the perception and popularity of Web services may continually change. Time is becoming an increasingly important factor in recommender systems since time effects influence users' preferences to a large extent. In order to help users with this problem, we propose a time-aware Web service recommendation system. First, we use K-means clustering method in order to exclude the less similar users, which share few common Web services with the active user at different times. Slope One algorithm is also adopted in order to deal with data sparsity problem by predicting the missing ratings over time. Then, a recommendation algorithm is presented in order to recommend the top-rated Web services. Experiments proved the accuracy of our approach compared to five existing solutions.
机译:随着Internet上功能相似的服务数量的不断增长,推荐技术已成为一种自然选择,以应对最佳服务选择这一艰巨的任务,并帮助消费者满足其需求和偏好。但是,大多数有关服务推荐的现有模型都是静态的,而在现实世界中,Web服务的感知和普及程度可能会不断变化。在时间上,时间已成为推荐系统中越来越重要的因素,因为时间影响在很大程度上影响用户的偏好。为了帮助用户解决此问题,我们提出了一种时间感知的Web服务推荐系统。首先,我们使用K-means聚类方法来排除不太相似的用户,这些用户在不同时间与活动用户共享的公共Web服务很少。为了预测数据随时间推移而丢失的等级,还采用了Slope One算法来处理数据稀疏性问题。然后,提出了一种推荐算法,以便推荐最受好评的Web服务。与五个现有解决方案相比,实验证明了我们方法的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号