首页> 外文期刊>Concurrency and computation: practice and experience >MapReduce-based storage and indexing for big health data
【24h】

MapReduce-based storage and indexing for big health data

机译:基于MapReduce的大型健康数据存储和索引

获取原文
获取原文并翻译 | 示例

摘要

Locality Sensitive Hashing (LSH) uses randomized method to alleviate Nearest Neighbor Searchissue in high dimensional spaces. However, handling of big dataset samples for LSH algorithmbecomes difficult task because of computational complexity. So, the major aim of this work is tointroduce a new LSHalgorithmwith Hadoop MapReduce framework for enhancing proficiency ofarbitrary reads over big dataset samples. The proposed Hash index improves efficiency by reducingthe amount of accessing data for range queries by creating buckets based on hyperplanes. ALSH onMapReduce is developed, which decreases the random data access time among map andreduce functions, in addition, it enhances proficiency. Lastly, with the aim of validating the performanceof presented index for search query in MapReduce, five performance metrics such aschanging cluster size, LSH for Bucket size Balancing, the overlapped boundary of a hyperplane,Bucket creationbasedonthe configured capacity, andnon-indexed,Hashindex,andglobal indexeddataset on the HDFS configured capacity are utilized. The effect of these metrics on dataset onthe HDFS configured capacity for the period of map and reduce functions as well depicts thepre-eminence of the presented Hash index.
机译:局部敏感哈希(LSH)使用随机方法缓解高维空间中的最近邻居搜索 r nissue。但是,由于计算复杂性,针对LSH算法处理大型数据集样本变得困难。因此,这项工作的主要目的是 r n通过Hadoop MapReduce框架引入一个新的LSH算法,以提高大型数据集样本的r n任意读取的熟练度。拟议的哈希索引通过创建基于超平面的存储桶来减少用于范围查询的数据访问量,从而提高了效率。开发了MapReduce上的A r nLSH,它减少了地图和 r nreduce函数之间的随机数据访问时间,此外还提高了熟练程度。最后,为了验证MapReduce中搜索查询的呈现索引的性能 r n,五个性能指标,例如 r n更改集群大小,用于Bucket Size Balancing的LSH,超平面的重叠边界, r nBucket根据配置的容量创建数据,并使用HDFS配置的容量上的非索引,哈希索引和全局索引 r n数据集。这些指标对数据集在地图和归约功能期间HDFS配置的容量上的影响以及所呈现的哈希索引的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号