首页> 外文期刊>CONCURRENCY PRACTICE & EXPERIENCE >Detection and classification of normal and abnormal patterns in mammograms using deep neural network
【24h】

Detection and classification of normal and abnormal patterns in mammograms using deep neural network

机译:使用深度神经网络对乳房X线照片中正常和异常模式进行检测和分类

获取原文
获取原文并翻译 | 示例

摘要

Breast cancer detection is the most challenging aspect in the field of health monitoring system.In this paper, breast cancer detection was assessed by employing Mammographic ImageAnalysis Society (MIAS) dataset. The proposed approach contains four major steps, namely,image-preprocessing, segmentation, feature extraction, and classification. Initially, Laplacianfiltering was utilized to identify the area of edges in mammogram images and, also, it was verysensitive to noise. Then, segmentation was carried-out using modified-Adaptively RegularizedKernel-based Fuzzy-C-Means (ARKFCM); it was a flexible high level machine learning techniqueto localize the object in complex template. In conventional ARKFCM, it was hard to segmentthe ill-defined masses in mammogram images. To address this concern, the Euclidean distancein ARKFCM was replaced by correlation function in order to improve the segmentationefficiency. The hybrid feature extraction (Histogram of Oriented Gradients (HOG), homogeneity,and energy) was performed on the segmented cancer region to extract feature subsets. Therespective feature values were given as the input for a multi-objective classifier: Deep NeuralNetwork (DNN) for classifying the normal and abnormal regions in mammogram images. Theexperimental outcome shows that the proposed methodology improved accuracy in breastcancer classification up to 3% to 9% compared to other existing methods.
机译:乳腺癌检测是健康监测系统领域最具挑战性的方面。 r n本文通过使用乳腺X线摄影图像 r n分析协会(MIAS)数据集对乳腺癌的检测进行了评估。所提出的方法包括四个主要步骤,即图像预处理,分割,特征提取和分类。最初,拉普拉斯滤波用于识别乳房X线照片中的边缘区域,并且对噪声非常敏感。然后,使用基于自适应正则化 r n内核的Fuzzy-C-Means(ARKFCM)进行分割;这是一种灵活的高级机器学习技术,用于在复杂模板中定位对象。在传统的ARKFCM中,很难在乳房X线照片中分割不明确的肿块。为了解决这个问题,欧克里德距离 r n在ARKFCM中被相关函数取代,以提高分割效果。对分割的癌症区域进行混合特征提取(定向梯度直方图(HOG),均匀性,能量和能量)以提取特征子集。给出了各个特征值作为多目标分类器的输入:深度神经网络(DNN),用于对乳房X线照片中的正常和异常区域进行分类。实验结果表明,与其他现有方法相比,所提出的方法将乳腺癌/乳腺癌分类的准确性提高了3%至9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号