首页> 外文期刊>Concurrency, practice and experience >Design and implementation of colour texture-basedmultiple object detection usingmorphological gradient approach
【24h】

Design and implementation of colour texture-basedmultiple object detection usingmorphological gradient approach

机译:基于形态梯度方法的基于颜色纹理的多目标检测设计与实现

获取原文
获取原文并翻译 | 示例

摘要

Non-rigid moving multiple objects detection and tracking play an important role in intelligentvideo surveillance system, autonomous navigation, and activity analysis.Closed Circuit Television(CCTV) systems are deployed in numerous areas such as airports, traffic intersections, undergroundstations,mass events, mall, schools, and organisations for security and public surveillance.Although these cameras record continuous video 24×7, it is a human constraint to manually monitorall events such as crime, terrorism, hideous, suspicious activities, the positioning of the vehicle,and fire recorded from a number of cameras. Moreover, problems like dynamic background, thecreation of ghost, sensor noise, varying illumination, and colour and compression artefacts affecteffective detection of multiple moving objects. This study presents an effective approach namedas enhanced Fractal Texture Analysis with KNN classifier (FTAKC) for tracking and detection ofmultiple objects from a video sequence. The proposed approach comprises three main phases,namely, detection ofmoving object, tracking of the object (enhanced Fractal Texture Analysis), andbehaviour analysis for activity recognition (KNNclassifier). The image feature has been extractedbased on colour, texture, and geometry were used to identify and track multiple objects in videoframes, and Problem domain knowledge rules were applied to distinguish normal or anomalousactivities aswell asbehaviours.Edgedetection algorithm (Intersection overUnion (IoU) thresholdto determine possible edge connections)was applied toward enhancing the illumination variationby multi-block Local Binary Pattern (LBP) temporal-analysis to do the segmentation. Finally, theefficiency and effectiveness of the proposed approach has been estimated based on the measureof average PSNR, precision, recall, f-measure, accuracy, and execution time. The Laboratory forImage and Media Understanding (LIMU) dataset has been utilised toward illustrating the robustnessof the proposed approach. Furthermore, it evaluated the performance based on the measureof precision, recall, and F-measure metrics. It has been tentatively demonstrated that the proposedapproach is suitable for recognizing multiple moving object with detection accuracy up to93.56%. The simulated results show that suggested approach is robust, flexible, as well as able tooutperform the traditional methods than the present object detection method.
机译:非刚性移动多目标检测和跟踪在智能 r n视频监控系统,自主导航和活动分析中发挥着重要作用。闭路电视(CCTV)系统被部署在机场,交通等众多领域十字路口,地下 r n车站,大型活动,购物中心,学校和组织,以进行安全和公共监视。 r n尽管这些摄像机记录的是24×7的连续视频,但人工监视 r n所有事件(例如,如犯罪,恐怖主义,恐怖,可疑活动,车辆的位置,和从许多摄像机记录的火灾。此外,诸如动态背景,重影增加,传感器噪声,照明变化以及颜色和压缩伪影等问题会影响对多个移动物体的有效检测。这项研究提出了一种有效的方法,该方法使用KNN分类器(FTAKC)来增强 r nas的分形纹理分析,用于跟踪和检测视频序列中的 r n多个对象。所提出的方法包括三个主要阶段,即运动对象的检测,对象的跟踪(增强的分形纹理分析)和活动识别的行为分析(KNN分类器)。已根据颜色,纹理和几何图形提取了图像特征 r n,用于识别和跟踪视频 r n帧中的多个对象,并应用了问题域知识规则来区分正常或异常 r n活动以及行为通过多块局部二值模式(LBP)时间分析,将边缘检测算法(交集联合(IoU)阈值 r n用于确定可能的边缘连接)应用于增强照明变化 r n。最后,已基于平均PSNR,精度,召回率,f量度,准确性和执行时间的度量来估计所提出方法的效率和有效性。图像和媒体理解实验室(LIMU)数据集已用于说明所提出方法的鲁棒性。此外,它基于精度,召回率和F度量指标的度量来评估性能。初步证明,提出的 n n方法适合于识别多个运动物体,检测精度高达 r n93.56%。仿真结果表明,所提出的方法是鲁棒的,灵活的,并且不能比传统的目标检测方法表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号