首页> 外文期刊>Concurrency, practice and experience >Deterministic and non-deterministic query optimization techniques in the cloud computing
【24h】

Deterministic and non-deterministic query optimization techniques in the cloud computing

机译:云计算中的确定性和非确定性查询优化技术

获取原文
获取原文并翻译 | 示例

摘要

Query optimization is considered as one of the main challenges of query processing phases inthe cloud environments. The query optimizer attempts to provide the most optimal executionplan by considering the possible query plans. Therefore, the execution cost of a query canbe affected by some factors, including communication costs, unavailability of resources, andaccess to large distributed data sets. In addition, it is known as NP-hard problem and manyresearchers are focused on this problem in recent years. Some techniques are proposed forsolving this problem. Deterministic and non-deterministic methods are two main categories tostudy these techniques. The deterministic and non-deterministic query optimization methodscan be further divided into three subcategories, cost-based query plan enumeration, multiplequery optimization, and adaptive query optimization methods. Moreover, this paper presentsthe advantages and disadvantages of the algorithms for solving the query optimization problemsin the cloud environments. Moreover, these techniques are compared in terms of optimization,time, cost, efficiency, and scalability. Finally, some key areas are offered to improve the cloudquery optimization mechanisms in the future.
机译:查询优化被视为云环境中查询处理阶段的主要挑战之一。查询优化器尝试通过考虑可能的查询计划来提供最佳的执行计划。因此,查询的执行成本可能会受到某些因素的影响,包括通信成本,资源的不可用性以及对大型分布式数据集的访问。另外,这被称为NP难题,近年来,许多研究者都在关注此问题。提出了一些解决此问题的技术。确定性和非确定性方法是研究这些技术的两个主要类别。确定性和非确定性查询优化方法可以进一步分为三个子类别:基于成本的查询计划枚举,多重查询优化和自适应查询优化方法。此外,本文介绍了用于解决云环境中查询优化问题的算法的优缺点。此外,在优化,时间,成本,效率和可伸缩性方面对这些技术进行了比较。最后,提供了一些关键领域来改进将来的cloud r nquery优化机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号