首页> 外文期刊>Concurrency and computation: practice and experience >An energy-aware method for data replication in the cloud environments using a Tabu search and particle swarm optimization algorithm
【24h】

An energy-aware method for data replication in the cloud environments using a Tabu search and particle swarm optimization algorithm

机译:使用禁忌搜索和粒子群优化算法在云环境中进行数据复制的能量感知方法

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing is a type of parallel, configurable, and flexible system, which refers to the provisionof applications on virtual data centers. However, reducing the energy consumption andalso maintaining high computation capacity have become timely and important challenges. Theconcept of replication is used to face these challenges. By increasing the number of data replicas,the energy consumption, the performance, and also the cost of creating and maintaining newreplicas also are increased.Deciding on the number of required replicas and their location on thecloud system is an NP-hard problem. In this paper, the problem is formulated as an optimizationproblem and a hybrid metaheuristic algorithm is offered to solve it. The algorithm uses the globalsearch capability of the Particle Swarm Optimization (PSO) algorithm and the local search capabilityof the Tabu Search (TS) to get high-quality solutions. The efficiency of the method is shownby comparing it with simple PSO, TS, and Ant Colony Optimization (ACO) algorithm on differenttest cases. The obtained results indicate that the method outperforms all of them in terms ofconsumed energy and cost.
机译:云计算是一种并行,可配置和灵活的系统,是指在虚拟数据中心上提供应用程序。但是,减少能耗并保持较高的计算能力已成为及时而重要的挑战。复制的概念用于应对这些挑战。通过增加数据副本的数量,还增加了能耗,性能以及创建和维护新副本的成本。确定所需副本的数量及其在 r 中的位置ncloud系统是一个NP难题。本文将该问题表述为一个优化 r n问题,并提出了一种混合元启发式算法来解决。该算法使用粒子群优化(PSO)算法的全局搜索能力和禁忌搜索(TS)的局部搜索能力来获得高质量的解决方案。通过与不同情况下的简单PSO,TS和蚁群优化(ACO)算法进行比较,显示了该方法的效率。所得结果表明,该方法在能耗和成本方面都优于所有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号