首页> 外文期刊>Concurrency and computation: practice and experience >Semantic approach for multi-objective optimisation of the ENTICE distributed Virtual Machine and container images repository
【24h】

Semantic approach for multi-objective optimisation of the ENTICE distributed Virtual Machine and container images repository

机译:ENTICE分布式虚拟机和容器映像存储库的多目标优化的语义方法

获取原文
获取原文并翻译 | 示例

摘要

New software engineering technologies facilitate development of applications from reusable software components, such as Virtual Machine and container images (VMI/CIs). Key requirements for the storage of VMI/CIs in public or private repositories are their fast delivery and cloud deployment times. ENTICE is a federated storage facility for VMI/CIs that provides optimisation mechanisms through the use of fragmentation and replication of images and a Pareto Multi-Objective Optimisation (MO) solver. The operation of the MO solver is, however, time-consuming due to the size and complexity of the metadata, specifying various non-functional requirements for the management ofVMI/CIs, such as geolocation, operational cost, and delivery time. In this work,we address this problemwith a newsemantic approach,which uses an ontology of the federatedENTICErepository, knowledgebase, and constraint-based reasoning mechanism. Open Source technologies such as Protégé, Jena Fuseki, and Pellet were used to develop a solution. Two specific use cases, (1) repository optimisationwith offline and (2) online redistribution of VMI/CIs, are presented in detail. In both use cases, data from the knowledge base are provided to theMO solver. It is shown that Pellet-based reasoning can be used to reduce the input metadata size used in the optimisation process by taking into consideration the geographic location of the VMI/CIs and the provenance of theVMIfragments. It is shownthat this process leads to reduction of the input metadata size for the MO solver by up to 60% and reduction of the total optimisation time of theMOsolver by up to 68%, while fully preserving the quality of the solution, which is significant.
机译:新的软件工程技术促进了可重用软件组件(例如虚拟机和容器映像(VMI / CI))的应用程序开发。在公共或私有存储库中存储VMI / CI的关键要求是它们的快速交付和云部署时间。 ENTICE是VMI / CI的联合存储工具,它通过使用图像的碎片和复制以及Pareto多目标优化(MO)求解器来提供优化机制。但是,由于元数据的大小和复杂性,MO求解器的操作非常耗时,从而指定了管理VMI / CI的各种非功能性要求,例如地理位置,运营成本和交付时间。在这项工作中,我们使用一种新的语义方法解决了这个问题,该方法使用了联邦ENTICE存储库,知识库和基于约束的推理机制的本体。使用Protégé,Jena Fuseki和Pellet等开源技术来开发解决方案。详细介绍了两个特定的用例:(1)带脱机的存储库优化和(2)VMI / CI的在线重新分发。在这两种用例中,都会将来自知识库的数据提供给MO解算器。结果表明,通过考虑VMI / CI的地理位置和VMIfragments的来源,可以使用基于粒子的推理来减少优化过程中使用的输入元数据大小。结果表明,此过程可将MO解算器的输入元数据大小减少多达60%,并将MOsolver的总优化时间减少多达68%,同时充分保留了解决方案的质量,这一点非常重要。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2019年第3期|e4264.1-e4264.19|共19页
  • 作者单位

    Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia,Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia;

    Distributed and Parallel Systems Group, University of Innsbruck, Innsbruck, Austria,University of Information Science and Technology,Ohrid, Macedonia;

    Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia,Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia;

    Distributed and Parallel Systems Group, University of Innsbruck, Innsbruck, Austria;

    Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    distributed repository; knowledge; reasoning; semantics; VirtualMachine or container images;

    机译:分布式存储库;知识;推理;语义VirtualMachine或容器映像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号