首页> 外文期刊>Concurrency, practice and experience >A server consolidationmethod with integrated deep learning predictor in local storage based clouds
【24h】

A server consolidationmethod with integrated deep learning predictor in local storage based clouds

机译:基于本地存储的云中集成了深度学习预测器的服务器整合方法

获取原文
获取原文并翻译 | 示例

摘要

Server consolidation is one of the critical techniques for energy-efficiency in cloud data centers.As it is often assumed that cloud service instances (eg, Amazon EC2 instances) utilize the sharedstorage only. In recent years, however, cloud service providers have been providing local storagefor cloud users, since local storage can offer a better performance with identified price. However,these cloud instances usually contain much more data than shared storage cloud instances.Thus, in such local storage based cloud center, the migration cost can be really high and is in direneed of an efficient resource pre-allocation. If we can predict the resource demand in advance,the migration oscillation will be reduced to minify the migration cost.We have found that thereare some related work about server consolidation based on forecasting. Unfortunately, their latestwork did not consider the background of “local storage” as we mentioned above. At the sametime, some research about local storage did not involve the prediction strategy, which plays asignificant part in server consolidation. To address this issue, this paper proposes Losari, a consolidationmethod,which takes numeric forecasting andlocal storage architecture into consideration.Losari consolidates servers on the basis of the resource demand predicted value using a statisticallearning method.We model the workload from real cloud production environment as a timeseries. Taking deep learning as a frameof reference, multiple deep belief networks integratedwithARIMA model was trained to study the feature of historical workload. The experimental resultshave showed that its average predicted error is only 10.7% in the short term,which is much lowerthan themost commonmodel based on threshold (19.8%) on the same dataset.What ismore, theresults show that Losari not only simulates the true sequences in high accuracy but also scales thecompute resource well, which demonstrated the validity of this integrated deep learning model.
机译:服务器整合是云数据中心提高能源效率的关键技术之一。 r n由于通常假定云服务实例(例如,Amazon EC2实例)仅利用共享存储。但是,近年来,由于本地存储可以以确定的价格提供更好的性能,因此云服务提供商一直在为云用户提供本地存储。但是, r n这些云实例通常包含比共享存储云实例更多的数据。 r n因此,在这种基于本地存储的云中心中,迁移成本可能确实很高,并且迫切需要高效资源预分配。如果我们可以提前预测资源需求,则可以减少迁移振荡,从而最大程度地降低迁移成本。我们发现,在基于预测的服务器整合方面存在一些相关工作。不幸的是,如上所述,他们的最新工作并未考虑“本地存储”的背景。同时,有关本地存储的一些研究并未涉及预测策略,这在服务器整合中起着重要作用。为了解决这个问题,本文提出了Losari,一种合并 r n方法,它考虑了数值预测和本地存储体系结构。 r nLosari使用统计 r n学习方法根据资源需求预测值合并服务器我们将真实云生产环境中的工作负载建模为一个时间序列。以深度学习为参考框架,训练了与 r nARIMA模型集成的多个深度信念网络,以研究历史工作量的特征。实验结果 r n已经表明,其短期内的平均预测误差仅为10.7%,远低于同一数据集上基于阈值的最常见模型(19.8%)的误差。结果表明,Losari不仅可以高精度地模拟真实序列,而且可以很好地扩展计算资源,这证明了该集成深度学习模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号