首页> 外文期刊>Concurrency and computation: practice and experience >A power load forecast approach based on spatial-temporal clustering of load data
【24h】

A power load forecast approach based on spatial-temporal clustering of load data

机译:基于负荷数据时空聚类的电力负荷预测方法

获取原文
获取原文并翻译 | 示例

摘要

Load forecast is very important for power system operation. Pursuing higher accuracy of loadforecast is always the major target of this field. The existence of bad historical load data couldbadly affect the forecast accuracies of time series–based load forecast techniques. Within themulti-node load data, the outliers of them are merely appeared instantaneously; the bad impactof the outliers could be decreased by making use of the spatial relativity of multi-node load data.Anovel load forecasting approach based on spatial-temporal feature clustering is proposed in thispaper. The temporal regular load pattern is extracted from the total load for an individual node.The spatial distribution characteristics of the individual incremental load have been categorizedby the k-medoids clustering algorithm. The MapReduce computing mode is used to manipulatemulti-node load data to raise computation efficiency. This new forecasting approach could reducethe influence of outliers and provide reliable and efficient load forecast with high accuracy. Testingin a real power system data set with up to 6.6% of outliers, the results of this approach showa lower forecasting error, about 6.2%, compared with three other time series–based methods(between 9.8% and 10.6%).
机译:负荷预测对于电力系统的运行非常重要。追求更高的负载精度始终是该领域的主要目标。错误的历史负荷数据的存在可能会严重影响基于时间序列的负荷预测技术的预测准确性。在多节点负载数据中,它们的异常值只是瞬间出现;利用多节点负荷数据的空间相关性可以减少离群值的不良影响。 r n本文提出了一种基于时空特征聚类的新颖负荷预测方法。从单个节点的总负载中提取时间规律的负载模式。 r n已通过k-medoids聚类算法对单个增量负载的空间分布特征进行了分类 r n。 MapReduce计算模式用于处理多节点负载数据以提高计算效率。这种新的预测方法可以减少异常值的影响,并提供可靠,高效的高精度负荷预测。在具有多达6.6%异常值的真实电力系统数据集中进行测试此方法的结果表明,与其他三种基于时间序列的方法相比,该方法的预测误差较低,约为6.2% r n (介于9.8%和10.6%之间)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号