首页> 外文期刊>Concurrency and computation: practice and experience >Data-driven pedestrian re-identification based on hierarchical semantic representation
【24h】

Data-driven pedestrian re-identification based on hierarchical semantic representation

机译:基于层次语义表示的数据驱动行人重识别

获取原文
获取原文并翻译 | 示例

摘要

Limited number of labeled data of surveillance video causes the training of supervised modelfor pedestrian re-identification to be a difficult task. Besides, applications of pedestrianre-identification in pedestrian retrieving and criminal tracking are limited because of the lack ofsemantic representation. In this paper, a data-driven pedestrian re-identificationmodel based onhierarchical semantic representation is proposed, extracting essential featureswith unsuperviseddeep learning model and enhancing the semantic representation of features with hierarchicalmid-level ‘attributes’. Firstly, CNNs, well-trained with the training process of CAEs, is used toextract features of horizontal blocks segmented from unlabeled pedestrian images. Then, thesefeatures are input into corresponding attribute classifiers to judge whether the pedestrian hasthe attributes. Lastly, with a table of ‘attributes-classes mapping relations’, final result can be calculated.Under the premise of improving the accuracy of attribute classifier, our qualitative resultsshow its clear advantages over the CHUK02, VIPeR, and i-LIDS data set. Our proposed methodis proved to effectively solve the problem of dependency on labeled data and lack of semanticexpression, and it also significantly outperforms the state-of-the-art in terms of accuracy andsemanteme.
机译:监视视频的标记数据数量有限,导致对监督模型的训练对行人的重新识别是一项艰巨的任务。此外,由于缺乏语义表示,行人身份识别在行人检索和犯罪追踪中的应用受到限制。提出了一种基于 r 多层次语义表示的数据驱动的行人重识别模型,利用无监督 r neep学习模型提取基本特征,并利用“分层 r 中层”属性增强特征的语义表示'。首先,经过CNE训练,并经过CAE训练过程的训练,可以从未标记的行人图像中分割出水平块的特征。然后,将这些特征输入到相应的属性分类器中,以判断行人是否具有该属性。最后,使用“属性-类映射关系”表,可以计算最终结果。 r n在提高属性分类器准确性的前提下,我们的定性结果 r n显示出其相对于CHUK02,VIPER,和i-LIDS数据集。我们提出的方法 r nis被证明可以有效解决对标记数据的依赖性和缺乏语义 r nexpression的问题,并且在准确性和 r nsemanteme方面也明显优于最新技术。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2018年第23期|e4403.1-e4403.15|共15页
  • 作者单位

    School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China;

    School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China;

    School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China;

    School of Law, Criminal Justice and Computing, Canterbury Christ Church University, Canterbury CT1 1QU, UK;

    School of Engineering and Design, Brunei University, Uxbridge, London UB8 3PH, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    attribute learning; CAEs; deep learning; pedestrian re-identification;

    机译:属性学习;CAE;深度学习行人重新识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号