首页> 外文期刊>Concurrency and computation: practice and experience >Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition
【24h】

Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition

机译:短时傅立叶变换和深度神经网络用于运动图像脑计算机接口识别

获取原文
获取原文并翻译 | 示例

摘要

Motor imagery (MI) is an important control paradigm in the field of brain-computer interface(BCI), which enables the recognition of personal intention. So far, numerous methods have beendesigned to classify EEG signal features for MI task. However, deep neural networks have beenseldom applied to analyze EEG signals. In this study, two novel kinds of deep learning schemesbased on convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) were proposedforMI-classification. The frequency domain representations of EEG signals were obtainedusing short time Fourier transform (STFT) to train models. Classification results were comparedbetween conventional algorithm, CNN, and LSTM models. Compared with two other methods,CNN algorithms had shown better performance. These conclusions verified that CNN methodwas promising for MI-based BCIs.
机译:运动图像(MI)是脑机接口 r n(BCI)领域中的重要控制范式,它可以识别个人意图。到目前为止,已经设计了许多方法来对MI任务的EEG信号特征进行分类。但是,很少使用深度神经网络来分析EEG信号。在这项研究中,提出了两种基于卷积神经网络(CNN)和长短期记忆(LSTM)的新型深度学习方案 r n用于MI分类。使用短时傅立叶变换(STFT)训练模型,获得了脑电信号的频域表示。在传统算法,CNN和LSTM模型之间比较了分类结果。与其他两种方法相比, r nCNN算法表现出更好的性能。这些结论证明,CNN方法对于基于MI的BCI具有广阔的前景。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2018年第23期|e4413.1-e4413.9|共9页
  • 作者单位

    Department of Computer Science and Technology, Tongji University, Shanghai 200092, China;

    Department of Computer Science, College of Information Engineering, ShanghaiMaritime University, Shanghai 201306, China;

    Department of Computer Science and Technology, Tongji University, Shanghai 200092, China;

    Department of Computer Science and Technology, Tongji University, Shanghai 200092, China;

    Department of Computer Science and Technology, Tongji University, Shanghai 200092, China;

    Department of Computer Science, College of Information Engineering, ShanghaiMaritime University, Shanghai 201306, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BCI; CNN; deep learning; LSTM,motor imagery;

    机译:BCI;CNN;深度学习LSTM;运动图像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号